| Definitions |  |  |  |
| :---: | :---: | :---: | :---: |
| Acids | Acids are compounds which ionise/dissociate in water to produce hydrogen ions $\left(\mathrm{H}^{+}\right)$. |  |  |
| Bases | Bases are compounds that are metal oxides or hydroxides that react with an acid to give a salt and water only. |  |  |
| Alkalis | Alkalis are bases that ionise/dissociate in water to produce hydroxide ions $\left(\mathrm{OH}^{-}\right)$. |  |  |
| Examples of Acids \& Bases |  |  |  |
| Acid | Chemical <br> Formula | Base | Chemical Formula |
| Hydrochl oric Acid | HCI | Magnesium <br> Oxide | MgO |
| Sulfuric <br> Acid | H2SO4 | Copper (II) Oxide | CuO |
| Nitric <br> Acid | HNO3 | Sodium Hydroxide | NaOH |
| Citric <br> Acid | C6H8O7 | Potassium Hydroxide | KOH |
| Ethanoic <br> Acid | CH3CO2H | Calcium Hydroxide | $\mathrm{Ca}(\mathrm{OH}) 2$ |
| Lactic <br> Acid | С3H6O3 | Aqueous <br> Ammonia | NH3 |

Acids 1 to 3 are known as mineral / inorganic acids while Acids 4 to 6 are known as organic acids.

Bases 1 \& 2 are insoluble bases while Bases 3 to 6 are soluble bases / alkalis.

## Metal Reactivity Series

|  |  | eries | Metals |
| :---: | :---: | :---: | :---: |
|  | - Potassium | K | (Most reactive metal) |
|  | Sodium | Na | \| |
|  | Calcium | Ca |  |
|  | Magnesium | Mg |  |
|  | Aluminium | $\mathrm{Al}^{\text {a }}$ |  |
|  | Zinc | Zn |  |
|  | Iron | Fe |  |
|  | Tin | Sn |  |
|  | Lead | Pb |  |
|  | [Hydrogen] | [H] |  |
| These metals are less reactive than hydrogen | - Copper | Cu |  |
|  | Mercury | Hg |  |
|  | Silver | Ag | $\nabla$ |
|  | Gold | Au | (Least reactive metal) |



## By fongrsy

cheatography.com/fongrsy/

## Types of Reactions

Metal + Acid $\rightarrow$ Salt + Hydrogen Gas Metal Carbonate + Acid $\rightarrow$ Salt + Water + Carbon Dioxide
Metal Oxide + Acid $\rightarrow$ Salt + Water Metal Hydroxide + Acid $\rightarrow$ Salt + Water
Base + Acid $\rightarrow$ Salt + Water (Neutralisation) Alkali + Acid $\rightarrow$ Salt + Water (Neutralisation)
Alkali + Ammonium Salt $\rightarrow$ Salt + Water + Ammonia Gas
Alkali + Salt $\rightarrow$ Metal Hydroxide + Salt

## Tests for Gases:

Hydrogen Gas - Extinguishes a lighted splinter with a 'pop' sound.
Carbon Dioxide Gas - Released as
effervescence. Reacts with limewater to form a white precipitate.
Ammonia Gas - Pungent odour. Turns red litmus paper blue.

Notes:
Base / Alkali + Acid is an exothermic reaction.
$\mathrm{Pb}(\mathrm{s})+\mathrm{H} 2 \mathrm{SO} 4 / \mathrm{HCl} \rightarrow \mathrm{PbSO} 4 / \mathrm{PbCl} 2+\mathrm{H} 2$ Lead reacts slowly then stops. Salt forms on the surface of the lead. The salt formed is insoluble.

## pH Scale

Acidic solutions have pH values $<7$.
They contain more $\mathrm{H}^{+}$ions and fewer $\mathrm{OH}^{-}$ ions.
Neutral solutions have pH values $=7$.
They contain equal amounts of $\mathrm{H}^{+}$ions and $\mathrm{OH}^{-}$ions.
Alkaline solutions have pH values $>7$. They contain more $\mathrm{OH}^{-}$ions and fewer $\mathrm{H}^{+}$ ions.

## Ionic Equations

1. Write a balanced chemical equation with state symbols.
2. Check which reactants and products can form ions in water. (Aqueous)
3. Split up these reactants and products into their respective ions.
4. Check for ions that appear in both LHS \& RHS of the equation, these are spectator ions that can be removed from the equation.

Published 21st July, 2018.
Last updated 26th July, 2018.
Page 1 of 2.

Ionic Equations (cont)
5. For those reactants and products which are unable to form ions, do not split the compounds.
6. What is left will be the net ionic equation.

The coefficients must be in the lowest ratio.

| Polyatomic lons |  |  |
| :---: | :---: | :---: |
| Charge | Name | Chemical Formula |
| $1+$ | Ammonium | NH4+ |
|  | Hydronium | $\mathrm{H} 3 \mathrm{O}^{+}$ |
| 1. | Nitrate | NO3- |
|  | Hydroxide | OH- |
|  | Ethanoate | CH3COO- |
| 2 - | Carbonate | $\mathrm{CO}^{2-}$ |
|  | Sulfate | SO4 ${ }^{2-}$ |
| 3- | Phosphate | PO4 ${ }^{3-}$ |

## Notes:

Silver ion: $\mathrm{Ag}^{+}$
Zinc ion: $\mathrm{Zn}^{2+}$

## Properties of Acids

1. Acids are corrosive.
2. Acids have a sour taste.
3. Acidic solutions conduct electricity.

## (Electrolytes)

4. Acids change the colour of indicators. Litmus Paper: Blue to Red
Methyl Orange Solution: Orange to Red Universal Indicator Paper: Orange to Red Universal Indicator Solution: Green to Red

## Properties of Alkalis

1. Alkalis have a soapy feeling and a bitter taste.
2. Alkaline solutions conduct electricity.
(Electrolytes)
3. Alkalis change the colour of indicators.

Litmus Paper: Red to Blue
Methyl Orange Solution: Orange to Yellow Universal Indicator Paper: Orange to Violet Universal Indicator Solution: Green to Violet

## Sponsored by Readability-Score.com

Measure your website readability!
https://readability-score.com

## Acids, Bases and Alkalis Cheat Sheet by fongrsy via cheatography.com/65383/cs/16397/

## Balancing Chemical Equations

Step 1: Write down the chemical equation. Step 2: List down the atoms (or polyatomic ions) involved in both sides.
Step 3: Count the number of atoms on both sides.
Step 4: Compare both sides and change the coefficients (not subscripts) so that the atoms on the left side are equal to the atoms on the right side.
(Tip: Balance the Metals first, then the
Non-Metals, and then the Oxygen atoms and Hydrogen atoms.)
Step 5: Double check both sides to make sure the atoms on both sides are equal.

## Soluble Salts

| Soluble | Insoluble |
| :--- | :--- |
| All nitrates | None |
| Most sulfates | Lead sulfate, barium <br> sulfate and calcium <br> sulfate |
| Most chlorides, <br> bromides and <br> iodides | Silver chloride, silver <br> bromide, silver iodide, <br> lead chloride, lead |
| Sodium carbonate, lead iodide |  |
| potassium <br> carbonate, <br> ammonium <br> carbonate | Most other carbonates |

Sodium hydroxide, Most other hydroxides potassium
hydroxide,
ammonium
hydroxide

| Uses of Acids |  |
| :--- | :--- |
| Citric Acid | Used as a sour flavouring <br> agent in food |
| Hydrochloric | Used as a rust remover |
| Acid |  |
| Sulfuric Acid | Used in car batteries |
| Nitric Acid | Used in fertilisers |



## By fongrsy

cheatography.com/fongrsy/



| Calcium <br> Hydroxide | Used in making toothpaste and <br> to reduce acidity in soil |
| :--- | :--- |
| Aqueous Used in making fertilisers and <br> Ammonia as a bleaching agent |  |


| Aqueous | Used in making fertilisers and <br> Ammonia a bleaching agent |
| :--- | :--- |
| Potassium | Used in electroplating and in |
| Hydroxide making cement and plaster |  |
| Magnesium Used as a detergent <br> Hydroxide  |  |


| Strength of Acids |  |
| :--- | :--- |
| Strong Acids | Weak Acids |
| Hydrochloric Acid | Citric Acid |
| Sulfuric Acid | Tartaric Acid |
| Nitric Acid | Ethanoic Acid |

## Strong Acids:

React very fast \& vigorously
lonise completely to produce large amounts of $\mathrm{H}^{+}$ions

Weak Acids:
React slowly \& less vigorously Ionise partially to produce small amounts of $\mathrm{H}^{+}$ ions

Do not confuse the strength of an acid with the concentration of an acid. The strength tells you how many $\mathbf{H}^{+}$ions are produced while the concentration tells you how much of an acid is dissolved in water.

| Strength of Alkalis |  |
| :--- | :--- |
| Strong Alkalis | Weak Alkalis |
| Sodium Hydroxide | Aqueous Ammonia |
| Potassium Hydroxide |  |
| Calcium Hydroxide |  |
| Strong Alkalis ionise completely to produce <br> large amounts of $\mathrm{OH}^{-}$-ions. <br> Weak Alkalis ionise partially to produce small <br> amounts of $\mathrm{OH}^{-}$ions. |  |

How to Carry Out Titration

1. For solid samples, weigh the solid and
dissolve in a known volume of solution (usually
$100 \mathrm{~cm}^{3}$ ).
2. Use a pipette to measure a known volume of
the solution (e.g $10 \mathrm{~cm}^{3}$ ) and empty into an
Erlenmeyer flask.
3. Add a few drops of indicator into the solution.
4. Put the second chemical into a burette. This
other solution will react with the synthesised
chemical sample in the flask. Often the solution
in the burette is an acid or alkali, and it must be
of a precise, known concentration.
5. Drop by drop, mix the chemical in the burette
into the Erlenmeyer flask until the end point is
reached. A colour change indicates the correct
amount has been added to react completely
with the chemical in the sample.
6. Take note of the volume of the solution
added from the burette.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

