§1 OpenAl ChatGPT - BEGINNERS VADEMECUM v1.10.6

& OpenAl

§1.1 Table of Content

¢ §1 OpenAl ChatGPT - BEGINNERS VADEMECUM v1.10.6

o §1.1 Table of Content
o §1.2 FAQs
= §1.2.1 What is ChatGPT?
§1.2.2 Is ChatGPT currently down?
§1.2.3 When is ChatGPT available?
§1.2.4 How accurate is ChatGPT?
§1.2.5 Can ChatGPT communicate in multiple languages?
§1.2.6 Can ChatGPT learn from its conversations?
§1.2.7 Can | ask personal questions to ChatGPT?
§1.2.8 What can | do with ChatGPT?
§1.2.9 Can | be banned from using ChatGPT?
§1.2.10 Does ChatGPT have any bias?
§1.2.11 Who can view my conversations?
1.2.12 How does ChatGPT know what time it is?
.2.13 Can | have multiple accounts?
.2.14 Where can | access ChatGPT?
.2.15 Is there an app for ChatGPT?
.2.16 How do | get access to GPT-4?
2.
2.

17 Can | use the output of ChatGPT as my own?
18 Is ChatGPT free?
.2.19 What about the features that involve uploading_ a photo?
§1.2.20 How about plugins?
§1.2.21 My payment doesn't work from a banned country, what should | do?
§1.2.22 Can ChatGPT-generated text be detected?
§1.2.23 What if | want to sell something_created with ChatGPT?
§1.2.24 Will you use my_conversations for training?
§1.2.25 What if | don't want my conversations used?
§1.2.26 Why can't ChatGPT solve complex math problems?
o §1.3 Basic GLOSSARY
§1.3.1 Action Space
§1.3.2 Artificial Intelligence (or “Al”)
§1.3.3 Artificial Neural Networks
§1.3.4 Autoencoder
§1.3.5 Bagging
§1.3.6 Big data
§1.3.7 Boosting
§1.3.8 Chat-ML
§1.3.9 Chatbots
§1.3.10 Classification
§1.3.11 Clustering
§1.3.12 Cognitive computing
§1.3.13 Context
§1.3.14 Conversational Al
§1.3.15 Convolutional neural network
§1.3.16 Cosine Similarity
§1.3.17 Cross-validation
§1.3.18 Data mining
§1.3.19 Decision tree
§1.3.20 Deep dream
§1.3.21 Deep Learning
§1.3.22 Dimensionality reduction
§1.3.23 Discount factor

LN LN LON LN LD LoD LN LD
MMM MQ GG

" ® m E E E E E §E N E E §E BN E N N N E S ®E E E/((QOFNE FE E E HE E E N E E S N E N N N E N N E N N N BN

o §1.4

§1.3.24 Discriminative Models

§1.3.25 Distance Between Two Vectors
§1.3.26 Dynamic programming

§1.3.27 Embedding

§1.3.28 Engine

§1.3.29 Ensemble learning

§1.3.30 Episode

§1.3.31 Epoch

§1.3.32 Euclidean Distance

§1.3.33 Exploration-exploitation tradeoff
§1.3.34 Feature engineering

§1.3.35 Feature selection

§1.3.36 Fine-Tuning

§1.3.37 Frequency penalty

§1.3.38 Function Calling

§1.3.39 Generative Adversarial Network (GAN)
§1.3.40 Generative Models

§1.3.41 Generative Pre-trained Transformer (or “GPT”)
§1.3.42 Hallucinations

§1.3.43 Hyperparameter tuning

§1.3.44 Image segmentation

§1.3.45 Image-to-image translation
§1.3.46 Inductive Learning

§1.3.47 Inference

§1.3.48 Inner Product

§1.3.49 Inpainting

§1.3.50 Instruct

§1.3.51 Jaccard Similarity

§1.3.52 K-means

§1.3.53 Knowledge Base

§1.3.54 Large Language Model (or “LLM”)
§1.3.55 Machine Learning_(or “ML”")
§1.3.56 Maximum a Posteriori Estimation (MAP)
§1.3.57 Maximum Context Window (MCW)
§1.3.58 Mindmaps

§1.3.59 Monte Carlo method

§1.3.60 Multi-armed bandit

§1.3.61 N-Shot Learning

§1.3.62 Naive Bayes classifier

§1.3.63 Natural Language Generation (or “NLG”)
§1.3.64 Natural Language Processing (or “NLP”)
§1.3.65 Natural Language Understanding_(or “NLU”)
§1.3.66 Neural Network

§1.3.67 OpenAl

§1.3.68 Ontology.

§1.3.69 OpenAl's Whisper

§1.3.70 Optimal policy,

§1.3.71 Optimal value function

§1.3.72 Optimization

§1.3.73 Overfitting

§1.3.74 Plugins

§1.3.75 Preprocessing

§1.3.76 Presence penalty

§1.3.77 Pre-training

§1.3.78 Prompt Chaining

§1.3.79 Prompt

§1.3.80 Prompt Dirifting

§1.3.81 Prompt Engineering

§1.3.82 Prompt Mantainance

§1.3.83 Q-learning

§1.3.84 Regression

§1.3.85 Reinforcement Learning
§1.3.86 Reinforcement Learning_From Human Feedback (RLHF)
§1.3.87 Reverse Prompting

§1.3.88 Reward function

§1.3.89 SARSA

§1.3.90 Semantic web

§1.3.91 Sequence Modeling

§1.3.92 Similarity Search

§1.3.93 Sparse Vector

§1.3.94 Stable Diffusion

§1.3.95 Standardization

§1.3.96 State space

§1.3.97 State transition

§1.3.98 Style transfer

§1.3.99 Supervised Learning

§1.3.100 Tanimoto Similarity

§1.3.101 Temperature

§1.3.102 Temporal difference learning
§1.3.103 Text-to-image model

§1.3.104 Token

§1.3.105 Tokenization

§1.3.106 Top p

§1.3.107 Training

§1.3.108 Trajectory

§1.3.109 Transfer learning

§1.3.110 Transformer

§1.3.111 Tree of Thought Prompt
§1.3.112 Underfitting

§1.3.113 Unsupervised Learning
§1.3.114 Value iteration

§1.3.115 Variational autoencoder
§1.3.116 Vector Embeddings

GPT-4 PROMPT TACTICS

§1.4.1 Tactic: Include details in your query to get more relevant answers
§1.4.2 Tactic: Ask the model to adopt a persona
§1.4.3 Tactic: Use delimiters to clearly indicate distinct parts of the input

= §1.4.4 Tactic: Specify the steps required to complete a task
= §1.4.5 Tactic: Provide examples
= §1.4.6 Tactic: Specify the desired length of the output
» §1.4.7 Tactic: Instruct the model to answer using_a reference text
= §1.4.8 Tactic: Instruct the model to answer with citations from a reference text
= §1.4.9 Tactic: Use intent classification to identify the most relevant instructions for a user query
= §1.4.10 Tactic: For dialogue applications that require very long conversations, summarize or filter previous dialogue
= §1.4.11 Tactic: Summarize long documents piecewise and construct a full summary recursively
= §1.4.12 Tactic: Instruct the model to work out its own solution before rushing to a conclusion
= §1.4.13 Tactic: Use inner monologue or a sequence of queries to hide the model's reasoning_process
= §1.4.14 Tactic: Ask the model if it missed anything_on previous passes
= §1.4.15 Tactic: Use embeddings-based search to implement efficient knowledge retrieval
= §1.4.16 Tactic: Use code execution to perform more accurate calculations or call external APIs
= §1.4.17 Tactic: Give the model access to specific functions
= §1.4.18 Tactic: Evaluate model outputs with reference to gold-standard answers
o §1.5 Prohibitions
= §1.5.1 Queries ChatGPT won't respond to by design
= §1.5.2 Jailbreaking Prompts

o §1.6 How to Reduce Your OpenAl API Costs
= §1.6.1 Four TIPS to Save Tokens
o §1.7 BASIC LINKS AND RESOURCES FOR GETTING STARTED
= §1.7.1 OpenAl OFFICIAL RESOURCES
§1.7.2 PROMPTS COLLECTIONS (FREE)
§1.7.3 PROMPTS COLLECTIONS (PAID)
§1.7.4 PROMPTS GENERATORS
§1.7.5 PROMPT CHAINING
§1.7.6 PROMPT APPIFICATION
§1.7.7 GUIDES AND TUTORIALS ABOUT PROMPTS AND ChatGPT
§1.7.8 BOOKS ABOUT ChatGPT AND PROMPT ENGINEERING
§1.7.9 ChatGPT PLAYGROUNDS AND ALTERNATIVE Uls
§1.7.10 Code Generation & Automated Programming
§1.7.11 IDE Powered by GPT-4
§1.7.12 LLM Agents Managers
.7.13 ChatGPT Discord Servers
.7.14 ChatGPT BOTS for Discord Servers
.7.15 ChatGPT BOTS for Telegram
.7.16 ChatGPT BOTS for Slack
7.1
7.

7 ChatGPT BOTS for WeChat
18 ChatGPT BOTS for Feishu
§1.7.19 ChatGPT BOTS for DingTalk
§1.7.20 ChatGPT BOTS for Microsoft Teams
§1.7.21 Al LINKS DIRECTORIES
§1.7.22 CHROME Extensions
§1.7.23 Emacs Packages
§1.7.24 TRANSLATIONS AND GRAMMAR CORRECTION
§1.7.25 GitHub Apps and Extensions
§1.7.26 Command Line Tools
§1.7.27 ChatGPT API libraries
§1.7.28 LOADERS for sending documents to ChatGPT
§1.7.29 Function Calling
§1.7.30 AUTO-GPT Related
§1.7.31 ChatGPT Plug-ins
§1.7.32 GPT4ALL Related
= §1.7.33 PROMPT ENGINEERING JOBS OFFERS
o §1.8 SOURCE OF THIS VADEMECUM

LN LN LN LN LN LD
[[[|

End Of Table Of Content

§1.2 FAQs

§1.2.1 What is ChatGPT?

ChatGPT is an Al language model developed by OpenAl. It uses machine learning to generate human-like text based on user input. While it is
not a human, it is designed to understand and respond to a broad range of topics in a conversational manner. It is capable of various tasks,
including answering questions, manipulating text and source code, writing essays, and more.

§1.2.2 Is ChatGPT currently down?

If you're experiencing issues accessing ChatGPT, you can check its server status on the official OpenAl Servers Status page.

§1.2.3 When is ChatGPT available?

ChatGPT is available 24/7. However, due to its popularity, there might be periods of high demand leading to temporary unavailability.
§1.2.4 How accurate is ChatGPT?

As an Al language model trained on vast human conversations and text, ChatGPT can understand and respond to various topics. However,
like any Al model, it is not perfect and may occasionally misunderstand user input or provide unsatisfactory responses. It is important to be
very specific when asking things, providing as much context as possible to avoid errors. You can also use the 'regenerate answer' option to get
multiple answers and choose the best one.

§1.2.5 Can ChatGPT communicate in multiple languages?

Yes, ChatGPT is capable of understanding and responding in multiple languages with varying degrees of accuracy.

§1.2.6 Can ChatGPT learn from its conversations?

No, ChatGPT does not learn from individual conversations. It can retain approximately 3000 words (or 4000 tokens) from the current

conversation, but it does not store any information beyond that. If you use the APl you can use the 'few shoot learning' mode to teach
ChatGPT by examples.

https://status.openai.com/

§1.2.7 Can | ask personal questions to ChatGPT?

While ChatGPT can answer questions on a wide range of topics, it does not have personal experiences or opinions. It is incapable of providing
personal insights or anecdotes. But if you tell it to act as a certain character, it can generate such content to match the character story and
personality.

§1.2.8 What can | do with ChatGPT?

ChatGPT can generate various types of content, including stories, scripts, program designs, technical documentation, and more. You can also
use it to convert between different text styles and generate dialogues by providing character details. You can ask ChatGPT to convert a
chapter from a novel to screeplay format, for example.

§1.2.9 Can | be banned from using ChatGPT?

Yes, users violating the platform's terms of service or community guidelines may be banned from using ChatGPT. Always ensure to follow the
guidelines and behave respectfully.

§1.2.10 Does ChatGPT have any bias?

As an Al trained on internet text data, ChatGPT may exhibit biases reflected in its training data. It is programmed to avoid discriminatory
output, although this function is not infallible.

§1.2.11 Who can view my conversations?
Your conversations can be viewed by OpenAl staff for system improvement and to ensure content compliance with their policies.
§1.2.12 How does ChatGPT know what time it is?

It doesn't know. But ChatGPT can use hidden messages containing current time information when initiating a new conversation to infer the
appoximate time.

§1.2.13 Can | have multiple accounts?

Yes, there are no restrictions on the number of accounts a user can have on the ChatGPT public testing service.
§1.2.14 Where can | access ChatGPT?

You can access ChatGPT by visiting chat.openai.com.

§1.2.15 Is there an app for ChatGPT?

The official ChatGPT iOS app is available. Android users can anticipate an app soon. Alternatively, you can use third-party apps like Poe.com
or Bing.

§1.2.16 How do | get access to GPT-4?

You can get access to GPT-4 by opting for the $20/month membership, which grants you 25 messages every 3 hours. Alternatively, you can
join the waitlist for the GPT-4 API.

§1.2.17 Can | use the output of ChatGPT as my own?

No, falsely claiming output from the services as human-generated is a violation of OpenAl's terms. You must always declare the output as Al
generated.

§1.2.18 Is ChatGPT free?

Yes, the 3.5 version of ChatGPT is free. The 4.0 version costs $20/month and provides you with 25 messages every 3 hours.
§1.2.19 What about the features that involve uploading a photo?

Features involving photo uploads are not yet released and are currently in the demo phase.

§1.2.20 How about plugins?

Certain plugins, including web browsing and 3rd party plugins, are available under beta features for plus users only.
§1.2.21 My payment doesn't work from a banned country, what should | do?

You can use a VPN to access ChatGPT, but you cannot use payment methods from banned countries.

§1.2.22 Can ChatGPT-generated text be detected?

While there are a few tells, existing detectors aren't completely accurate in distinguishing ChatGPT-generated text.
§1.2.23 What if | want to sell something created with ChatGPT?

The content generated by ChatGPT legally belongs to you.

§1.2.24 Will you use my conversations for training?

Yes, your conversations may be used by Al trainers for improvement. An incognito version is available in settings that won't save your chat
history.

§1.2.25 What if | don't want my conversations used?

You can use the API instead of the web app of ChatGPT. For the API, your data only stays in the servers for 30 days for abuse detection, and
is deleted afterward. It is not used for training data like ChatGPT does. You can also use the incognito mode from settings in ChatGPT.

§1.2.26 Why can't ChatGPT solve complex math problems?

ChatGPT's capabilities in solving complex math problems are limited. However, the Wolfram plugin can assist with that.

§1.3 Basic GLOSSARY

§1.3.1 Action Space

The set of all possible actions that an Al agent can take in a reinforcement learning problem.

§1.3.2 Artificial Intelligence (or “Al”)

The simulation of human intelligence in machines that are programmed to think and learn like humans.
§1.3.3 Artificial Neural Networks

ANNs are computing systems composed of neurons, where each neuron individually performs only a simple computation. The power of an
ANN comes from the complexity of the connections these neurons can form. ANNs accept input variables as information, weigh variables as
knowledge, and output a prediction. Every ANN works this way. The first ANN (the Perceptron) was created by Frank Rosenblatt in 1958. At
the beginning, ANNs were built and used to solve basic tasks, but they rapidly evolved, becoming complex mechanisms able to solve
challenges in areas like Computer Vision and Natural Language Processing. ANNs architectures were improved by the Deep Learning
algorithms in order to fit the complexity of the data we started gathering; Convolutional Neural Networks (CNNs) were designed to process
spatial data like images, while Recurrent Neural Networks (RNNs) and Long Short Term Memories (LSTMs) were built to process sequential
data like text. But it wasn’t until just recently that the invention of Transformers (see) changed the way we conceived ANNSs. If Deep Learning
was the most important invention in the history of Al, Transformers were certainly the second most important. Introduced in 2017,
Transformers rapidly showed effective results at modelling data with long-range dependencies. Originally thought to solve NLP tasks, the
application of Transformers has expanded, reaching incredible accomplishments in many disciplines, even unlocking the ability to predict the
tridimensional shape of proteins, a major scientific advance for developing treatments for diseases. DeepMind’s AlphaFold ANN system has
been recognised as a solution to this grand challenge.

§1.3.4 Autoencoder

A type of neural network used for dimensionality reduction and feature learning, consisting of an encoder and a decoder that learn to compress
and reconstruct data respectively.

§1.3.5 Bagging

A machine learning ensemble technique in which multiple models are trained on different random subsets of the training data and combined to
make predictions, with the goal of reducing the variance and improving the generalization of the model.

§1.3.6 Big data
Large sets of data that can be analyzed by the Al and used to gain insights and make informed decisions.
§1.3.7 Boosting

A machine learning ensemble technique in which weak learners are combined to form a strong learner, with the goal of improving the overall
prediction accuracy.

§1.3.8 Chat-ML

A jsonl formatted text used by chat completions models to store questions and answers of a conversation. Usually used for fine-tuning or to
provide context to the engine.

§1.3.9 Chatbots

A user-friendly interface that allows the user to ask questions and receive answers. Depending on the backend system that fuels the chatbot, it
can be as basic as pre-written responses to a fully conversational Al that automates issue resolution.

§1.3.10 Classification

The process of categorizing data into predefined classes or groups.

§1.3.11 Clustering

The process of grouping data points together based on similarity or common characteristics.
§1.3.12 Cognitive computing

The development of computer systems that can perform tasks that normally require human-like intelligence, such as learning and problem-
solving.

§1.3.13 Context

A prompt can be considered as isolated question or a part of a conversation. The previous part of the conversation of a chat session is called
‘context', and can be provided to the engine in the Chat-ML format (see). The context can also be composed by fine-tuning (see) or embddings
(see).

§1.3.14 Conversational Al

A subfield of Al that focuses on developing systems that can understand and generate human-like language and conduct a back-and-forth
conversation. Example: A chatbot that can understand and respond to customer inquiries in a natural and human-like manner.

§1.3.15 Convolutional neural network

A type of neural network specifically designed for image and video recognition tasks, using convolutional layers to learn and recognize
patterns in the data.

§1.3.16 Cosine Similarity

Cosine similarity (or cosine distance) is a measure of similarity between two non-zero vectors of an inner product space that measures the
cosine of the angle between them. Two vectors with the same orientation have a cosine similarity of 1, two vectors at 90° have a similarity of 0,
and two vectors diametrically opposed have a similarity of -1, independent of their magnitude. The formula for cosine similarity is: Cosine
similarity = (Dot product of two vectors)/(Product of Euclidean lengths of two vectors). Cosine similarity is a commonly used measure in
information retrieval and text mining, where it is often used to measure the similarity of documents. It is also used in collaborative filtering,
where it is used to measure the similarity of users or items.

§1.3.17 Cross-validation

A model evaluation technique in which the training data is split into multiple folds, and the model is trained and evaluated on each fold to
obtain an estimate of its generalization performance.

§1.3.18 Data mining

The process of extracting useful patterns and knowledge from large datasets.

§1.3.19 Decision tree

A flowchart-like tree structure used to make decisions based on a series of binary splits.

§1.3.20 Deep dream

An image generation technique developed by Google that uses a convolutional neural network (see) to generate dream-like images by
amplifying the features of the network.

§1.3.21 Deep Learning

A subfield of ML that uses neural networks with multiple layers to learn from data without human supervision. Example: A deep learning model
that can recognize objects in an image by processing the image through multiple layers of neural networks. The invention of Deep Learning
was the main turning point in the history of Al. The earliest deep-learning-like algorithms that had multiple layers of non-linear features can be
traced back to Ivakhnenko and Lapa in 1965, who used thin but deep models with polynomial activation functions which they analyzed with
statistical methods. In each layer, they selected the best features through statistical methods and forwarded them to the next layer. They did
not use backpropagation to train their network end-to-end but used layer-by-layer least squares fitting where previous layers were
independently fitted from later layers. The key to make Deep Learning possible, the backpropagation algorithm, was derived already in the
early 1960s but in an inefficient and incomplete form. It was finally cracked by Geoffrey Hinton, known by many to be the godfather of deep
learning. His seminal 1986 paper on backpropagation that he wrote with David Rumelhart is universally considered the most important paper
in the history of Al. Before Deep Learning, Al failure to deliver substantial results was leading to a progressive reduction in funding for research
into neural networks. The term artificial intelligence dropped to near pseudoscience status during the so called 'Al winter' and the field didn't
recover until the backpropagation algorithm started showing its capabilities in 2012 as the speed of GPUs increased rapidly and it was soon
possible to train deep networks such as convolutional networks without the help of pretraining as demonstrated by Ciresan and colleagues in
2011 and 2012. Krizhevsky, Sutskever, and Hinton used a similar architecture in 2012 that also features rectified linear activation functions and
dropout for regularization. They received outstanding results in the ILSVRC-2012 ImageNet competition, which marked the abandonment of
feature engineering and the adoption of feature learning in the form of deep learning. Google, Facebook, and Microsoft noticed this trend and
made major acquisitions of deep learning startups and research teams between 2012 and 2014. From here, research in deep learning
accelerated rapidly. Previous machine learning algorithms leverage structured, manually labeled data to make predictions—meaning that
specific features are defined from the input data for the model and organized into tables in advance. This doesn’t necessarily mean that it
doesn’t use unstructured data at all; it just means that if it does, it generally goes through some manual pre-processing to organize it into a
structured format. Deep learning eliminates most of data pre-processing that is typically involved with machine learning. Deep Learning
algorithm can ingest and process unstructured data, like text and images, and it automates feature extraction, removing the dependency on
human experts. For example, let's say that we had a set of photos of different pets, and we wanted to categorize by “cat’, “dog”, “hamster”, et
cetera. Deep learning algorithms can determine which features (e.g. ears) are most important to distinguish each animal from another. In
machine learning, this hierarchy of features is established manually by a human expert. In Deep Learning, through the processes of gradient
descent and backpropagation, the algorithm automatically creates multiple 'abstractions' and store them in meta-layers above of the main
neural network layer, then it adjusts and fits those 'abstractions' for accuracy, allowing it to make predictions about a new photo of an animal
with increased precision thanks to the abstract 'idea’ of the object or the animal it has learned to recognize. The ancient theory of Plato about
the impossibility of ideas to originate in the physical world was finally proved false.

§1.3.22 Dimensionality reduction

The process of reducing the number of features or dimensions in a dataset while preserving as much information as possible.

§1.3.23 Discount factor

The factor by which the future rewards are discounted in the reinforcement learning algorithm, to balance the tradeoff between the short-term
and the long-term rewards.

§1.3.24 Discriminative Models

Models that classify a data example and predict a label. For example, a model that identifies whether a picture is a dog or a cat.
§1.3.25 Distance Between Two Vectors

The distance between two vectors is a measure of how different they are from each other. It is a numerical value that can be calculated using
a variety of methods, such as Euclidean distance, dot product, or cosine similarity. This measure of distance is used in many machine learning
and data science applications, such as clustering, classification, and recommendation systems. For example, in a clustering algorithm, the
distance between two vectors can be used to determine which cluster they should be assigned to. In a classification algorithm, the distance
between two vectors can be used to determine which class they should be assigned to. In a recommendation system, the distance between
two vectors can be used to determine which items should be recommended to a user.

§1.3.26 Dynamic programming

A method of solving optimization problems by breaking them down into smaller subproblems and storing the solutions to these subproblems in
a table or array.

§1.3.27 Embedding
Some models provide the option to embed documents (text, images, sounds, data files..) in the conversation. The embedded document is
tokenized and converted in a format optimal for search or data extraction. Like for fine-tuning (see), and engine provided with embedded

documents can be considered a specialized version of the generic original engine.

§1.3.28 Engine

The engine is the Al model employed to generate responses. For example: “text-davinci-003”.

§1.3.29 Ensemble learning

A machine learning technique in which multiple models are trained and combined to make predictions, with the goal of improving the overall
performance of the model.

§1.3.30 Episode

The sequence of states, actions, and rewards that an agent experiences in a reinforcement learning problem before reaching a terminal state.

§1.3.31 Epoch

One completed cycle of training of a Neural Network on a given Data Set. A greater number of epochs correspond to a more accurate and
refined learning from the training Data Set, but an excessive number of epochs can lead to Overfitting (see).

§1.3.32 Euclidean Distance

The Euclidean Distance is a measure of the distance between two points in a Euclidean space. It is calculated by taking the square root of the
sum of the squared differences between the coordinates of the two points. For example, if two points have coordinates (x1, y1) and (x2, y2),
then the Euclidean Distance between them is given by:

d = sqrt((x2—-x1)"2+(y2-y1)*2).

The Euclidean Distance is a useful measure for many applications, such as clustering, classification, and regression. It is also used in machine
learning algorithms such as k-means clustering and k-nearest neighbors.

§1.3.33 Exploration-exploitation tradeoff

The tension in reinforcement learning between exploring new actions and exploiting the known good actions, in order to balance the learning
and the reward-maximizing objectives of the agent.

§1.3.34 Feature engineering
The process of selecting and creating informative and relevant features from raw data for use in a machine learning model.
§1.3.35 Feature selection

The process of choosing a subset of the most relevant features from a larger set of features for use in a machine learning model.
§1.3.36 Fine-Tuning

The process of adapting a pre-trained model to a specific task by training it on a smaller dataset. Fine-tuning is commonly used when a pre-
trained model is available for a related task, but the available data for the new task is limited or the target task is slightly different from the
original task.

Some models allow the user to provide conversation examples with many precompiled questions and answers to let the engine learn by
example what the user expects from it. Using fine-tuning an engine can be trained to give responses that more accurately follow the user
needs or are formatted in a special way. When using a fine-tuned engine, as when using documents Embedding (see), an engine can be
considered a specialized version of the generic original engine.

§1.3.37 Frequency penalty

The frequency penalty parameter controls the model’s tendency to repeat predictions. The frequency penalty reduces the probability of words
that have already been generated. The penalty depends on how many times a word has already occurred in the prediction.

§1.3.38 Function Calling

The ability of an Al to answer a prompt with a line of code calling a function with specific arguments, so that the user can execute that line of
code. Function calling allows the users to more reliably get structured data back from the model. For example in an OpenAl API call, you can
describe functions to gpt-3.5-turbo-0613 and gpt-4-0613, and have the model intelligently choose to output a JSON object containing
arguments to call those functions. The Chat Completions API does not call the function; instead, the model generates JSON that you can use
to call the function in your code.

The latest models (gpt-3.5-turbo-0613 and gpt-4-0613) have been fine-tuned to both detect when a function should to be called (depending on
the input) and to respond with JSON that adheres to the function signature. With this capability also comes potential risks. We strongly
recommend building in user confirmation flows before taking actions that impact the world on behalf of users (sending an email, posting
something online, making a purchase, etc).

Under the hood, functions are injected into the system message in a syntax the model has been trained on. This means functions count
against the model's context limit and are billed as input tokens. If running into context limits, the users need to limit the number of functions or
the length of documentation they provide for function parameters. You can find an example of function calling_in the OpenAl API
documentation.

§1.3.39 Generative Adversarial Network (GAN)

A type of neural network consisting of two competing networks, a generator and a discriminator, that learn to generate and recognize synthetic
data respectively. The training of the generator network is the result of the generator network trying to generate various responses to a prompt
(see) until one of those can convince the discriminator network of its correctedness or of its similarity to the target result, called 'ground truth'
(see).

§1.3.40 Generative Models

Models that generate new data by discovering patterns in data inputs or training data. For example, creating an original short story based on
analyzing existing, published short stories.

§1.3.41 Generative Pre-trained Transformer (or “GPT”)
A type of deep learning model trained on a large dataset to generate human-like text, the underlying architecture of ChatGPT
§1.3.42 Hallucinations

When LLMs struggle with niche or specific questions, for example because their knowledge base is missing the information they need,
sometimes they generate false facts to came up with meaningful answers. Those false facts are called 'hallucinations'. Hallucinations are
rarely obvious and likely to go undetected by system users. To avoid hallucinations the user needs to provide the LLM with additional “source
knowledge” (information embedded directly into the model knowledge base), since only by filling up the missing information we can eliminate
the need for the LLM to hallucinate and finally get accurate answers to our question.

https://platform.openai.com/docs/guides/gpt/function-calling

§1.3.43 Hyperparameter tuning

The process of adjusting the parameters of a machine learning model that are set prior to training, in order to improve its performance.
§1.3.44 Image segmentation

The process of dividing an image into multiple regions or segments, each representing a different object or background.

§1.3.45 Image-to-image translation

The process of converting an image from one domain to another, such as translating a photograph to a painting or a sketch.

§1.3.46 Inductive Learning

Inductive learning is a type of machine learning that uses data to make predictions or generalizations about a given problem. It is based on the
idea that if a set of data points have certain characteristics, then future data points will also have those characteristics. This type of learning is
used in many areas of machine learning and data science, such as supervised learning, unsupervised learning, and reinforcement learning.
For example, in supervised learning, inductive learning can be used to build a model that can predict the outcome of a given problem based on
the data it has been trained on. In unsupervised learning, inductive learning can be used to identify patterns in data and make predictions
about future data points. In reinforcement learning, inductive learning can be used to identify the best action to take in a given situation.

§1.3.47 Inference

The process of deducing conclusions from premises using logical reasoning.
§1.3.48 Inner Product

An inner product is a mathematical operation that takes two vectors of the same size and produces a scalar value. It is calculated by
multiplying each element of one vector with the corresponding element of the other vector and then summing up the results. In machine
learning and data science, inner products are used to measure the similarity between two vectors. For example, in a neural network, the inner
product of two vectors can be used to measure the similarity between two input vectors, or between an input vector and a weight vector. Inner
products can also be used to measure the similarity between two images, or between two text documents.

§1.3.49 Inpainting

The process of replacing, repairing or filling in damaged or missing parts of an image with Al create content.
§1.3.50 Instruct

INSTRUCT is a technique for getting LLM’s to execute small programs as part of a prompt. It builds on other established prompting techniques
like “lets think step by step” and “chain-of-thought” to improve the baseline models ability to reason and solve more complex problems. Using
INSTRUCT you can get the model to more reliably perform complex tasks like planning, intent & entity recognition, and even avoid
hallucinations. It only works with GPT-4. Here is an example of INSTRUCT Prompt:

PROMPT:

Text:

Nevertheless, in this mansion of gloom I now proposed to myself a sojourn of some weeks. Its proprietor,
Roderick Usher, had been one of my boon companions in boyhood; but many years had elapsed since our last
meeting. A letter, however, had lately reached me in a distant part of the country — a letter from him —
which, in its wildly importunate nature, had admitted of no other than a personal reply. The MS. gave
evidence of nervous agitation. The writer spoke of acute bodily illness — of a mental disorder which
oppressed him — and of an earnest desire to see me, as his best, and indeed his only personal friend,
with a view of attempting, by the cheerfulness of my society, some alleviation of his malady. It was the
manner in which all this, and much more, was said — it was the apparent heart that went with his request
— which allowed me no room for hesitation; and I accordingly obeyed forthwith what I still considered a
very singular summons.

Editing Steps:

- Check for clarity and coherence.
- Check for flow and readability.
- Check for voice and tone.

Program:

1: create a variable to track the current editing step.

2: list the issues identified by the current editing step.

3: increment the step variable and if there are more edititing steps left go to line 2.

4: apply the generated suggestions and return the updated text. Begin your reponse with RESPONSE.

State each line of the program and show your work for performing that line.
GPT-4 ANSWER

1: create a variable to track the current editing step.
- Let step =1

2: list the issues identified by the current editing step.
- The current editing step is to check for clarity and coherence.
- Some possible issues are:

- The phrase "a sojourn of some weeks" is vague and could be more specific.

- The phrase "a letter from him" is redundant and could be replaced by a pronoun.

- The phrase "in its wildly importunate nature" is unclear and could be simplified.

- The abbreviation "MS." is obscure and could be spelled out.

- The phrase "some alleviation of his malady" is weak and could be stronger.

- The phrase "it was the manner in which all this, and much more, was said" is wordy and could be
condensed.

- The phrase "which allowed me no room for hesitation" is passive and could be active.

3: increment the step variable and if there are more editing steps left go to line 2.
- Let step = 2

2: list the issues identified by the current editing step.

- The current editing step is to check for flow and readability.
- Some possible issues are:

- The sentence "Its proprietor, Roderick Usher, had been one of my boon companions in boyhood; but many
years had elapsed since our last meeting." is long and could be broken into two sentences.

- The sentence "The writer spoke of acute bodily illness — of a mental disorder which oppressed him —
and of an earnest desire to see me, as his best, and indeed his only personal friend, with a view of
attempting, by the cheerfulness of my society, some alleviation of his malady." is also long and could be
divided into two sentences.

- The use of dashes and commas in the same sentence creates confusion and could be replaced by
semicolons or periods.

- The use of "which" twice in the same sentence creates ambiguity and could be replaced by "that" or
rephrased.

- The use of "it was" twice in the last sentence creates repetition and could be varied.

3: increment the step variable and if there are more editing steps left go to line 2.
Let step = 3

2: list the issues identified by the current editing step.
- The current editing step is to check for voice and tone.
- Some possible issues are:

- The voice of the narrator is formal and distant, which may not match the intended mood of the story.

- The tone of the text is gloomy and somber, which may be appropriate for the setting, but could be
contrasted with some hints of curiosity or suspense.

- The word choice and syntax are complex and archaic, which may reflect the time period of the story,
but could also alienate modern readers.

4: apply the generated suggestions and return the updated text. Begin your response with RESPONSE.

RESPONSE: I decided to stay for several weeks in this mansion of gloom. Its proprietor was Roderick
Usher, an old friend from my childhood. But I had not seen him for many years. He had sent me a letter,
which begged me to come and visit him. He wrote that he suffered from a severe physical illness and a
mental disorder that tormented him. He also expressed an urgent wish to see me, his best and only friend,
hoping that my cheerful company might ease his pain. His words were full of emotion and sincerity, and I
felt compelled to answer his strange request.

§1.3.51 Jaccard Similarity

The Jaccard similarity coefficient, or Jaccard Index, is a measure of similarity between two sets of data. It is calculated by taking the size of the
intersection of the two sets and dividing it by the size of the union of the two sets. This gives us a value between 0 and 1, where 0 indicates no
similarity and 1 indicates perfect similarity. The Jaccard similarity coefficient can be used in machine learning and data science in a variety of
ways. For example, it can be used to measure the similarity between two documents, or to measure the similarity between two sets of data
points. It can also be used to measure the similarity between two clusters of data points, or to measure the similarity between two sets of
features. In addition, it can be used to measure the similarity between two sets of words or phrases.

§1.3.52 K-means

An unsupervised machine learning algorithm used for clustering data points into a predefined number of clusters.

§1.3.53 Knowledge Base

A knowledge base acts as the place where we store information and as the system that effectively retrieves this information. A knowledge base
is a store of information that can act as an external reference for GQA models. We can think of it as the “long-term memory” for Al systems.
We refer to knowledge bases that can enable the retrieval of semantically relevant information as vector databases. A vector database stores
vector representations of information encoded using specific ML models. These models have an “understanding” of language and can encode
passages with similar meanings into a similar vector space and dissimilar passages into a dissimilar vector space.

In OpenAl API the process of storing a dataset in the knowledge base is called 'embedding' (see).

§1.3.54 Large Language Model (or “LLM”)

A type of deep learning model trained on a large dataset to perform natural language understanding and generation tasks. There are many
famous LLMs like BERT, PaLM, GPT-2, GPT-3, and the groundbreaking GPT3.5. All of these models vary in size (number of parameters that
can be tuned), in the breadth of tasks (coding, chat, scientific, etc.), and in what they're trained on.

§1.3.55 Machine Learning (or “ML”)

A subfield of Al that involves the development of algorithms and statistical models that enable machines to improve their performance with
experience. Example: A machine learning algorithm that can predict which customers are most likely to churn based on their past behavior.

§1.3.56 Maximum a Posteriori Estimation (MAP)

Maximum a posteriori (MAP) estimation is a method of estimating the parameters of a statistical model. It is a type of Bayesian estimation,
which uses Bayes' theorem to update the probability for a hypothesis as more evidence or information becomes available. MAP estimation can
be used in machine learning and data science to estimate the parameters of a model, such as the weights of a neural network or the
coefficients of a linear regression model. MAP estimation can also be used to estimate the probability of a given hypothesis, such as the
probability of a given data point belonging to a certain class.

§1.3.57 Maximum Context Window (MCW)

The maximum length of our prompt and completion output. LLMs are limited by what can be considered analog to human's 'short-term
memory' or 'working memory" (while the LLM knowledge base can be compared to human's 'long-term memory' or 'storage memory'). This
limitation is measured by the 'maximum context window', and is so defined: context window = input tokens + output tokens. GPT-3 and
GPT3.5 have a maximum context of 8,000 tokens, while GPT-4 offers up to 32,000 token for the context in his gpt-4-32k model. Usually the
greater the size of the context window, the more capable and smart the LLM is.

§1.3.58 Mindmaps

You can ask GPT-4 to generate a 'mind map' of his knowledge about something. GPT-4 is familiar with the markmap.js library. So if you ask it
to create a detailed mindmap using the markup syntax, it will.

Here is how to do it:

1 - Ask GPT4 to create a "mind map of" something using markmap.js formatting. Example Prompt: "Please create a detailed mind map of an
avocado using the markmap.js formatting".

2 - Copy the GPT response (the code part) and paste it to https://markmap.js.org/repl.

https://markmap.js.org/repl
https://markmap.js.org/repl

3 - Click 'Download interactive HTML' on the bottom of the graph to download the generated mindmap.

You can also ask GPT-4 to reformat the mindmap to markdown, so you can import it in programs like XMind. Example Prompt: "Create a
mindmap in markdown format on the subject of ai, ethics, and society at least 3 levels deep. Then reformat it in markdown and give me the
raw markup code, so | can import it into programs like XMind."

§1.3.59 Monte Carlo method
A reinforcement learning algorithm that uses random sampling to estimate the value function or the optimal policy.
§1.3.60 Multi-armed bandit

A reinforcement learning problem in which an agent must choose among a set of actions, each with an unknown reward distribution, and learn
which actions are the most rewarding through trial and error

§1.3.61 N-Shot Learning

Zero/Single/Few shot learning are variations of the same concept — providing a model with little or no training data to classify new data and
guide predictions. A “shot” represents a single training example. Fun fact: Within the GPT prompt, you can ask for “N” examples to improve the
accuracy of the response.

§1.3.62 Naive Bayes classifier

A machine learning algorithm used for classification tasks based on the Bayes theorem of probability.

§1.3.63 Natural Language Generation (or “NLG”)

A subfield of Al that produces natural written or spoken language.

§1.3.64 Natural Language Processing (or “NLP”)

A subfield of Al that involves programming computers to process massive volumes of language data. Focuses on transforming free-form text
into a standardized structure.

§1.3.65 Natural Language Understanding (or “NLU”)

A subtopic of NLP that analyzes text to glean semantic meaning from written language. That means understanding context, sentiment, intent,
etc.

§1.3.66 Neural Network

A machine learning model inspired by the human brain's structure and function that's composed of layers of interconnected nodes or
"neurons." Example: A neural network that can recognize handwritten digits with high accuracy. See 'Artificial Neural Networks'.

§1.3.67 OpenAl

The organization that developed ChatGPT. More broadly speaking, OpenAl is a research company that aims to develop and promote friendly
Al responsibly.

§1.3.68 Ontology

A system or set of definitions that represents the relationships and categories within a particular domain of knowledge.

§1.3.69 OpenAl's Whisper

OpenAl's Whisper is a new state-of-the-art (SotA) model in speech-to-text. It is able to almost flawlessly transcribe speech across dozens of
languages and even handle poor audio quality or excessive background noise. Whisper is best described as the GPT-3 or DALL-E 2 of

speech-to-text. It's open source and can transcribe audio in real-time or faster with unparalleled performance. OpenAl’'s Whisper speech-to-
text-model is completely open source and available via OpenAl's Whisper library available for pip install via GitHub.

§1.3.70 Optimal policy

The policy that maximizes the expected cumulative reward in a reinforcement learning problem.

§1.3.71 Optimal value function

The value function that corresponds to the optimal policy in a reinforcement learning problem.

§1.3.72 Optimization

The process of adjusting the parameters of a model to minimize a loss function that measures the difference between the model's predictions
and the true values. Example: Optimizing a neural network's parameters using a gradient descent algorithm to minimize the error between the
model's predictions and the true values.

§1.3.73 Overfitting

A problem that occurs when a model is too complex, performing well on the training data but poorly on unseen data. Example: A model that
has memorized the training data instead of learning general patterns and thus performs poorly on new data.

§1.3.74 Plugins

Plugins are third party piece of software that can add special actions to the Al models. ChatGPT-4 introduced dozen of plugins, that allowed
actions like browsing the web, scrape websites, consult Wolfram Alpha for complex math equations and scientific data, draw graphs and
maps, look for geographical data, stocks or news, upload PDFs or other documents, compose playlists, request stock photos or execute
actions on other websites via third party services. There are two ways to interact to Plugins: the first standadard way is to call the plugin
directly with the prompt: "Hey [plugin name], what can you help me with?". The plugin will present itself and its options. The other is to let
ChatGPT-4 use automatically the plugin whenever it thinks it is useful to answer your prompt.

§1.3.75 Preprocessing
The process of preparing the data for use in a machine learning model, including cleaning, transforming, and scaling the data.

§1.3.76 Presence penalty

The presence penalty parameter encourages the model to make novel predictions. The presence penalty lowers the probability of a word if it
already appeared in the predicted text. Unlike the frequency penalty, the presence penalty does not depend on the frequency at which words
appear in past predictions.

§1.3.77 Pre-training

Training a model on a large dataset before fine-tuning it to a specific task. Example: Pre-training a language model like ChatGPT on a large
corpus of text data before fine-tuning it for a specific natural language task such as language translation.

§1.3.78 Prompt Chaining

A technique used to combine different Prompts in sequence, so that the answer to each Prompt is used as input of the subsequent Prompt.
This technique allows to modularize the Prompts and enable recycling, swapping and composing of many Prompts steps, so that the Prompts
become easier to create, customize and mantain. Here is an example of seven Prompts to be executed one after another as a chain:

1. Provide me with the ideal outline for an effective & persuasive blog post.

2. Write a list of Engaging Headlines for this Blog post based on [Topic].

3. Write a list of Subheadings & Hooks for this same blog post

4. Write a list of Keywords for this Blog.

5. Write a list of Compelling Call-to-Actions for the blog post

6. Combine the best headline with the best Subheadings, Hooks, Keywords and Call-to-Action to write a
blog post for [topic]

7. Re-write this Blog Post in the [Style], [Tone], [Voice] and [Personality].

§1.3.79 Prompt

The prompt is the part of a conversation provided by the user. For example: "What is the capital of Austria?" Complex prompts can be used to
guide the engine in giving a better answer. The field of knowledge regarding how to write effective prompts is called 'Prompt Engineering'. A
Prompt can also include images, documents or other data. The most basic prompt structure is divided in 5 parts and called CGTDO or "Five
Fingers Prompt":

« CONTEXT: In what role the Al Assistant must answer me? (Example: "Act as a professional and experienced Lawyer.")

e« GOAL : What is that | need to do, my objective. (Example: "I need to obtain a reimbursement from an airline company."”)

+ TASKS : What | want YOU to do, your tasks. (Example: "l want you to help me write the text of the letter to the airline company
asking for the right reimbursement.”)

« DATA: All the information | have about the GOAL and that can be useful to complete the TASK. (Example: Company Name, Airplane,
Fly Number, Departure, Arrival, Cost, Date, Billing data, Cause of the delay/suspension, other relevant facts, documents,
witness report, news articles, etc.)

 OUTPUT FORMAT : What kind of format | want from ChatGPT for his answer. (Example: Table, List, Summary, Outline, HTML,
HTMLS5, SVG, Code, Spreadsheet, CSYV file, Plain Text, Ascii, XML, json, Markdown markup code, Word Cloud etc. Also if you
need the whole output in a single answer or to proceed step by step with multiple Q&A.)

Less popular alternatives to the CGTDO (Five Fingers Prompt) prompt structure are:

RTF: Role, Task, Format.

CTF: Context, Task, Format

RASCEF: Role, Action, Steps, Context, Examples, Format PECRA: Purpose, Expectation, Context, Request, Action.
TREF: Task, Requirement, Expectation, Format.

GRADE: Goal, Request, Action, Detail, Examples.

ROSES: Role, Objective, Scenario, Expected Solution, Steps

RDIREC: Role, Definition, Intent, Request, Example, Clarification Tone

RSCET: Role, Situation, Complication, Expectation, Task

§1.3.80 Prompt Drifting

A phenomenon that happens when a perfectly working prompt stops working correctly after some time because the LLM has improved, fine
tuned or trained so much that its new responses do not match anymore the original responses at the time the prompt was written. Prompt
Drifting is considered a negative side effect of the constant evolution and improvement of the Al large language models. Prompt Drifting is
usually solved retesting all prompts at regular intervals, and then comparing some predefinited answers to the ones given at the time the
prompt was written, and eventually rewriting and updating the prompts that do not pass the test. The LLM itself is usually instructed to made
the comparison, to determine how much the prompt has drifted and if it has reached a point where the answers are no more functional to the
original scope of the prompt. This task is called 'Prompt Mantainance'.

§1.3.81 Prompt Engineering

Identifying inputs (called: prompts) that result in the most meaningful outputs. As of now, prompt engineering is essential for LLMs. LLMs are a
fusion of layers of algorithms and, consequently, have limited controllability with few opportunities to control and override behavior. Writing a
prompt is then considered a two way process: on one side the prompt must asks the Al for something we need and on the other side it teaches
the Al what it need to know to complete the request. It has been compared to a socratic dialog, an activity that Plato compared to the work of
the obstetrician helping and guiding pregnant women (the Al) to give birth to their children (the right answer we seek). An advanced example of
prompt engineering is providing a collection of templates and wizards to direct a copywriting application via a series of predefined steps, for
example. Also multiple prompts can even be chained together to create complex prompts from a combination of simpler and smaller ones.
Prompts are usually written in informal language, but there exist formal schemes devised to make them more easy to write, edit and mantain in
a more programmatic way, like the 'Guidance' scripting language for LLM prompts developed by Microsoft.

§1.3.82 Prompt Mantainance
The regular testing and adjustement of the prompts to avoid the negative consequences of Prompt Drifting (see).

§1.3.83 Q-learning

A reinforcement learning algorithm that learns an action-value function, also known as a Q-function, which estimates the expected future
rewards for each action in a given state.

§1.3.84 Regression
A machine learning technique used to predict a continuous numerical value based on a set of input features.
§1.3.85 Reinforcement Learning

A type of machine learning in which a model learns to make decisions by interacting with its environment and receiving feedback through
rewards or penalties. GPT uses reinforcement learning from human feedback (see). When tuning GPT-3, human annotators provided
examples of the desired model behavior and ranked outputs from the model.

https://github.com/microsoft/guidance

§1.3.86 Reinforcement Learning From Human Feedback (RLHF)

A type of machine learning technique in which an artificial intelligence (Al) system learns from the feedback or rewards provided by a human
user or trainer.

§1.3.87 Reverse Prompting

An advanced prompt engeneering technique where the user gets the Al to ask him questions as if he were the expert, leveraging the super
human LLM capability to quickly find and summarize issues via its advanced pattern matching, while at the same time injecting his own human
reasoning skills that the LLM lacks.

§1.3.88 Reward function
The function that defines the reward or the punishment that an agent receives for its actions in a reinforcement learning problem.
§1.3.89 SARSA

A reinforcement learning algorithm that learns an action-value function using the expected reward and the value of the next action, rather than
the final reward as in Q-learning.

§1.3.90 Semantic web

An extension of the World Wide Web that enables machines to understand the meaning of the data on the web.
§1.3.91 Sequence Modeling

A subfield of NLP that focuses on modeling sequential data such as text, speech, or time series data. Example: A sequence model that can
predict the next word in a sentence or generate coherent text.

§1.3.92 Similarity Search

When searching for similar text, there must be some kind of metric to check for overlap in the data. For text, this is simple: are the characters
in the strings we are searching over close to the ones we have in our search string? There are various ways to define a metric for similarity.
For example Hamming distance and Levenshtein distance are precise metrics for describing the similarity (or dissimilarity) of strings. If we
wanted to determine similarity across movies, we might look at people who had watched and rated the same movies, along with what other
movies they had watched and rated. To find product similarity, we could look at customer purchases and see if they have bought other items in
the same purchase. And so on. Regardless of the types of objects we’re searching through, we use “vectors” or “vector embeddings” (see) to
convert the data we’re analyzing into simpler numerical representations. For generic situations — such as text data — we can use widely
available models like Word2vec. That model is trained against a wide collection of text data to determine similarities and differences between
the concepts that real words represent. Then, we check for similarity on those vector representations while still maintaining the deeper
meaning of the objects themselves. This is why 'similarity search' is sometimes called 'vector search'.

§1.3.93 Sparse Vector

A sparse vector is a vector that contains mostly zeros, with only a few non-zero elements. It is a useful data structure for representing data that
is mostly empty or has a lot of zeros. For example, if you have a vector of length 10,000 and only 10 elements are non-zero, then it is a sparse
vector. It is used in machine learning and data science when dealing with large datasets, as it can reduce the amount of memory needed to
store the data. For example, if you have a dataset with millions of features where only a few features are important for each data point, you
can represent it as a sparse vector, which will take up much less memory than a dense vector.

§1.3.94 Stable Diffusion

Stable Diffusion is a text-to-image model based on deep learning that can generate highly detailed images based on text descriptions.
§1.3.95 Standardization

The process of transforming the values of a feature or a dataset to have zero mean and unit variance.

§1.3.96 State space

The set of all possible states in a reinforcement learning problem.
§1.3.97 State transition

The movement of the agent from one state to another state in a reinforcement learning problem, based on an action and the transition
probabilities of the environment.

§1.3.98 Style transfer
The process of transferring the style of one image to another image, while preserving the content of the second image.

§1.3.99 Supervised Learning

A type of machine learning in which a model is trained on labeled data to make predictions about new, unseen data. Example: A supervised
learning algorithm that can classify images of handwritten digits based on labeled training data.

§1.3.100 Tanimoto Similarity

Tanimoto similarity is a measure of similarity between two sets of data. It is a metric used to compare the similarity of two sets of data, and is
often used in machine learning and data science.

The Tanimoto similarity is calculated by taking the intersection of two sets and dividing it by the sum of the sizes of the two sets. This gives a
value between 0 and 1, where 0 indicates no similarity and 1 indicates perfect similarity.

Tanimoto similarity is often used in machine learning and data science to compare the similarity of two sets of data. For example, it can be
used to compare the similarity of two sets of images, or two sets of text documents. It can also be used to compare the similarity of two sets of
data points, such as two sets of customer data. In this case, the Tanimoto similarity can be used to identify customers who are similar in terms
of their purchase history or other characteristics.

It is similar to the Jaccard coefficient (see), which is the ratio of the intersection of two sets to the union of two sets. The Tanimoto similarity
and Jaccard coefficient are both measures of similarity between two sets of data. The main difference between the two is that the Tanimoto
similarity takes into account the size of the sets, while the Jaccard Index does not. The Tanimoto similarity is calculated by dividing the number
of elements that are common to both sets by the total number of elements in both sets, while the Jaccard Index is calculated by dividing the
number of elements that are common to both sets by the number of elements that are unique to either set.

§1.3.101 Temperature

A parameter of the model, with value between 0 (precise) and 1 (creative). A model generate different responses internally, and those are
mapped into probabilities. To let the Al be creative and variable in the responses the engine introduced the concept of temperature. At
temperature=0 only the most probable answer is returned, and the answer is deterministic (the same question return the same answer). But as
the temperature value increases, the chance that the Al model will select a less probable response increases, and the answer become less
deterministic and more creative (but also more prone to errors). With a temperature between 0 and 1, we can control the randomness and
creativity of the model’s predictions. For example if an user needs to generate poetry, he should use a temperature of 1.0. If instead he needs
an answer to technical question or to generate programming code, he should use a temperature of 0. When in ChatGPT you don't have
access to the parameters like in the playground or via the OpenAl API. This is why for certain subjects that require precision, like science or
coding, is preferable to avoid ChatGPT but use the Playground or the OpenAl API instead.

§1.3.102 Temporal difference learning

A reinforcement learning algorithm that uses the temporal difference error, the difference between the estimated and the actual future rewards,
to update the action-value function.

§1.3.103 Text-to-image model
A machine learning system that generates images based on natural language descriptions.
§1.3.104 Token

Tokens are used to count the size of questions and responses from an engine. A token can be seen as a piece of word. The size of a token
depends on the engine and the language used. As a rule of thumb, 1 token is around 4 characters.

§1.3.105 Tokenization

The process of breaking text into individual words or subwords to input them into a language model. Example: Tokenizing a sentence "l am
ChatGPT" into the words: “I,” “am,” “Chat,” “G,” and “PT.”

§1.3.106 Top p

The top p parameter specifies a sampling threshold during inference time. Top p sampling (sometimes called nucleus sampling) is a technique
used to sample possible outcomes of the model. To better understand this concept, let's imagine that the model has to predict the next token
after the sentence “l want to eat®. For simplicity, we will assume that a token is a word and that the model outputs the following probabilities:

carrots (2% likely),
cucumbers (1.5% likely),
aubergines (1% likely),
Spinach (0.5% likely),
Broccoli (0.3% likely),

This set of words forms a probability distribution “P(Word | “I want to eat*)” and the cumulative distribution function (CDF) would look as
follows:

2% with carrots,
3.5% with carrots and cucumbers,
4.5% with carrots, cucumbers, and aubergines

If we set the top p-parameter to 3.5%, the model will sample and randomly select between carrots and cucumbers according to their likelihood.
With a top p at 4.5%, the model will randomly select a word between carrots, cucumbers, and aubergines.

Like the temperature, the top p parameter controls the randomness and originality of the model.

Since Top p and temperature parameters both control the randomness of the model, OpenAl documentation recommends using either one
parameter or the other.

§1.3.107 Training

Training refers to the process of learning from data to improve the performance of a model or system. Training is a fundamental part of
machine learning and involves feeding a model with a dataset and adjusting its parameters or weights to optimize its performance for a
specific task.

§1.3.108 Trajectory
The sequence of states and actions that an agent follows in a reinforcement learning problem.

§1.3.109 Transfer learning

A machine learning technique in which a model trained on one task is fine-tuned or adapted for a related task.
§1.3.110 Transformer

A type of neural network architecture designed to process sequential data, such as text. An example is the transformer architecture used in
models like ChatGPT for natural language processing tasks. Before Transformers, ANN architectures, like RNNs, had severe memory
problems. In the case of RNNs, there’s a limited scope they can remember about long-range dependencies (the words they saw a long time
ago that are somehow related to the next word). That is, RNNs put too much emphasis on words being close to one another and too much
emphasis on upstream context over downstream context. Reading one word at a time, RNNs need to perform multiple steps to make
decisions that depend on words far away from each other, which is incredibly slow. Self-attention fixes this problem. The Transformer starts by
generating initial representations, or embeddings, for each word. Then, using self-attention, it aggregates information from all of the other
words, generating a new representation per word informed by the entire context. This step is then repeated multiple times in parallel for all
words, successively generating new representations.

Using self-attention mechanisms, Transformers can capture the context of a word from distant parts of a sentence, both before and after the
appearance of that word, in order to encode valuable information. Sentences are processed as a whole, rather than word by word. This way,
Transformer models avoid suffering from long dependency issues and forgetting past information. Self-attention is computed not once but
multiple times in the Transformer’s architecture, in parallel and independently (aptly referred to as Multi-head Attention). Another advantage of
Transformers is the improved performance of the ANN. The sequential nature of RNNs makes it more difficult to fully take advantage of fast
modern computing devices such as TPUs and GPUs, which excel at parallel and non-sequential processing. Since the Transformer
architecture lends itself to parallelization, finally we can really boost the speed with which these models can be trained. Transformers'
successful results led to their escalation into massive models like OpenAl GPT-3, trained with absurd amounts of data, capable of performing
the most diverse tasks. GPT-3, the third-generation GPT model, was trained on 175 billion parameters, about 10 times the size of previous
models. In general, the more parameters a model has, the more data is required to train the model. As per the creators, the OpenAl GPT-3
model has been trained on about 45 TB text data from multiple sources which include Wikipedia and books. This gigantic pretrained model

provides users with the ability to fine-tune NLP tasks with very little data to accomplish novel tasks, like creating articles, poetry, stories, news
reports and dialogue.

§1.3.111 Tree of Thought Prompt

A kind of Prompt where the Al is forced to simulate multiple points of view when answering a question, and simulate a dialog between those
POV until they reach a consensus on the answer. This Prompt is used to force the Al to consider all aspects of an issue before answering. This
technique is useful when the question is complex and requires in depth analysis.

Here is an example of this kind of Prompt:

Three experts with exceptional logical thinking skills are collaboratively answering a question using a
tree of thoughts method.

Each expert will share their thought process in detail, taking into account the previous thoughts of
others and admitting any errors. They will iteratively refine and expand upon each other's ideas, giving
credit where it's due.

The process continues until a conclusive answer is found. Use step by step thinking & organize the entire
response in detailed steps in a markdown table format. Once this table is complete, provide a summary of
the proposed recommendations.

My question is [write your question here]

§1.3.112 Underfitting

A condition in which a machine learning model performs poorly on both the training and new, unseen data, due to being too simple and unable
to capture the underlying patterns in the data.

§1.3.113 Unsupervised Learning

A type of machine learning in which a model is trained on unlabeled data to find patterns or features in the data. Example: An unsupervised
learning algorithm that can cluster similar images of handwritten digits based on their visual features.

§1.3.114 Value iteration
A reinforcement learning algorithm that involves iteratively improving the value function until it converges to the optimal value function.
§1.3.115 Variational autoencoder

A type of generative model that consists of an encoder network that maps the input data to a latent representation and a decoder network that
maps the latent representation back to the original data space.

§1.3.116 Vector Embeddings

Vector embeddings are a simplified numerical representation of complex data, like text or images, used to make it easier to run generic
machine-learning algorithms on sets of that data. By taking real-world objects and translating them to vector embeddings — numerical
representations — those numbers can be fed into machine learning algorithms to determine semantic similarity. We store vector embeddings
with IDs that tie our data back to the objects they represent, allowing us to search through that data. A store of vector embeddings and their
IDs is called a “vector index.”

END of Glossary

§1.4 GPT-4 PROMPT TACTICS

The following prompts tactics only work on GPT-4 or higher.

§1.4.1 Tactic: Include details in your query to get more relevant answers

In order to get a highly relevant response, make sure that requests provide any important details or context. Otherwise you are leaving it up to
the model to guess what you mean.

Worse Better
How do | add numbers in How do | add up a row of dollar amounts in Excel? | want to do this automatically for a whole sheet of rows
Excel? with all the totals ending up on the right in a column called "Total".
Who's president? Who was the president of Mexico in 2021, and how frequently are elections held?

Write code to calculate the Write a TypeScript function to efficiently calculate the Fibonacci sequence. Comment the code liberally to
Fibonacci sequence. explain what each piece does and why it's written that way.

Summarize the meeting Summarize the meeting notes in a single paragraph. Then write a markdown list of the speakers and each of
notes. their key points. Finally, list the next steps or action items suggested by the speakers, if any.

§1.4.2 Tactic: Ask the model to adopt a persona
The system message can be used to specify the persona used by the model in its replies.
SYSTEM

When I ask for help to write something, you will reply with a document that contains at least one joke or
playful comment in every paragraph.

USER

Write a thank you note to my steel bolt vendor for getting the delivery in on time and in short notice.
This made it possible for us to deliver an important order.

Open in Playground

§1.4.3 Tactic: Use delimiters to clearly indicate distinct parts of the input

Delimiters like triple quotation marks, XML tags, section titles, etc. can help demarcate sections of text to be treated differently.
USER

Summarize the text delimited by triple quotes with a haiku. """insert text here"""

Open in Playground

SYSTEM

You will be provided with a pair of articles (delimited with XML tags) about the same topic. First
summarize the arguments of each article. Then indicate which of them makes a better argument and explain
why.

USER

[article]"""insert first article here"""[/article] [article]"""insert second article here"""[/article]

Open in Playground

SYSTEM

You will be provided with a thesis abstract and a suggested title for it. The thesis title should give
the reader a good idea of the topic of the thesis but should also be eye-catching. If the title does not
meet these criteria, suggest 5 alternatives.

USER

Abstract: """insert abstract here""" Title: """insert title here

Open in Playground

For straightforward tasks such as these, using delimiters might not make a difference in the output quality. However, the more complex a task
is the more important it is to disambiguate task details. Don’t make GPTs work to understand exactly what you are asking of them.

§1.4.4 Tactic: Specify the steps required to complete a task

Some tasks are best specified as a sequence of steps. Writing the steps out explicitly can make it easier for the model to follow them.

SYSTEM
Use the following step-by-step instructions to respond to user inputs. Step 1 - The user will provide you
with text in triple quotes. Summarize this text in one sentence with a prefix that says "Summary: ". Step

2 - Translate the summary from Step 1 into Spanish, with a prefix that says "Translation: ".
USER
"""insert text here"""

Open in Playground

§1.4.5 Tactic: Provide examples
Providing general instructions that apply to all examples is generally more efficient than demonstrating all permutations of a task by example,

but in some cases providing examples may be easier. For example, if you intend for the model to copy a particular style of responding to user
queries which is difficult to describe explicitly. This is known as "few-shot" prompting.

SYSTEM

Answer in a consistent style.
USER

Teach me about patience.
ASSISTANT

The river that carves the deepest valley flows from a modest spring; the grandest symphony originates

https://platform.openai.com/playground/p/default-playful-thank-you-note
https://platform.openai.com/playground/p/default-delimiters-1
https://platform.openai.com/playground/p/default-delimiters-2
https://platform.openai.com/playground/p/default-delimiters-3
https://platform.openai.com/playground/p/default-step-by-step-summarize-and-translate

from a single note; the most intricate tapestry begins with a solitary thread.
USER
Teach me about the ocean.

Open in Playground

§1.4.6 Tactic: Specify the desired length of the output

You can ask the model to produce outputs that are of a given target length. The targeted output length can be specified in terms of the count of
words, sentences, paragraphs, bullet points, etc. Note however that instructing the model to generate a specific number of words does not
work with high precision. The model can more reliably generate outputs with a specific number of paragraphs or bullet points.

USER

Summarize the text delimited by triple quotes in about 50 words. """insert text here"""

Open in Playground

USER

Summarize the text delimited by triple quotes in 2 paragraphs. """insert text here"""

Open in Playground

USER
Summarize the text delimited by triple quotes in 3 bullet points. """insert text here"""

Open in Playground

§1.4.7 Tactic: Instruct the model to answer using a reference text

If we can provide a model with trusted information that is relevant to the current query, then we can instruct the model to use the provided
information to compose its answer.

SYSTEM

Use the provided articles delimited by triple quotes to answer questions. If the answer cannot be found
in the articles, write "I could not find an answer."

USER
"""insert articles, each delimited by triple quotes""" Question: """insert question here"""

Open in Playground

Given that GPTs have limited context windows, in order to apply this tactic we need some way to dynamically lookup information that is
relevant to the question being asked. Embeddings can be used to implement efficient knowledge retrieval. See the tactic "Use embeddings-
based search to implement efficient knowledge retrieval" for more details on how to implement this.

§1.4.8 Tactic: Instruct the model to answer with citations from a reference text

If the input has been supplemented with relevant knowledge, it's straightforward to request that the model add citations to its answers by
referencing passages from provided documents. Note that citations in the output can then be verified programmatically by string matching
within the provided documents.

SYSTEM

You will be provided with a document delimited by triple quotes and a question. Your task is to answer
the question using only the provided document and to cite the passage(s) of the document used to answer
the question. If the document does not contain the information needed to answer this question then simply
write: "Insufficient information." If an answer to the question is provided, it must be annotated with a
citation. Use the following format for to cite relevant passages ({"citation": ..}).

USER
"""insert document here""" Question: """insert question here"""

Open in Playground

§1.4.9 Tactic: Use intent classification to identify the most relevant instructions for a user query

For tasks in which lots of independent sets of instructions are needed to handle different cases, it can be beneficial to first classify the type of
query and to use that classification to determine which instructions are needed. This can be achieved by defining fixed categories and
hardcoding instructions that are relevant for handling tasks in a given category. This process can also be applied recursively to decompose a
task into a sequence of stages. The advantage of this approach is that each query will contain only those instructions that are required to
perform the next stage of a task which can result in lower error rates compared to using a single query to perform the whole task. This can
also result in lower costs since larger prompts cost more to run (see pricing information).

Suppose for example that for a customer service application, queries could be usefully classified as follows:

SYSTEM

You will be provided with customer service queries. Classify each query into a primary category and a
secondary category. Provide your output in json format with the keys: primary and secondary. Primary
categories: Billing, Technical Support, Account Management, or General Inquiry. Billing secondary
categories: - Unsubscribe or upgrade - Add a payment method - Explanation for charge - Dispute a charge
Technical Support secondary categories: - Troubleshooting - Device compatibility - Software updates

https://platform.openai.com/playground/p/default-chat-few-shot
https://platform.openai.com/playground/p/default-summarize-text-50-words
https://platform.openai.com/playground/p/default-summarize-text-2-paragraphs
https://platform.openai.com/playground/p/default-summarize-text-3-bullet-points
https://platform.openai.com/playground/p/default-answer-from-retrieved-documents
https://platform.openai.com/docs/guides/embeddings/what-are-embeddings
https://platform.openai.com/docs/guides/gpt-best-practices/tactic-use-embeddings-based-search-to-implement-efficient-knowledge-retrieval
https://platform.openai.com/playground/p/default-answer-with-citation
https://openai.com/pricing

Account Management secondary categories: - Password reset - Update personal information - Close account -
Account security General Inquiry secondary categories: - Product information - Pricing - Feedback - Speak
to a human

USER

I need to get my internet working again.

Open in Playground

Based on the classification of the customer query, a set of more specific instructions can be provided to a GPT model to handle next steps. For
example, suppose the customer requires help with "troubleshooting".

SYSTEM

You will be provided with customer service inquiries that require troubleshooting in a technical support
context. Help the user by: - Ask them to check that all cables to/from the router are connected. Note
that it is common for cables to come loose over time. - If all cables are connected and the issue
persists, ask them which router model they are using - Now you will advise them how to restart their
device: -- If the model number is MTD-327J, advise them to push the red button and hold it for 5 seconds,
then wait 5 minutes before testing the connection. -- If the model number is MTD-327S, advise them to
unplug and replug it, then wait 5 minutes before testing the connection. - If the customer's issue
persists after restarting the device and waiting 5 minutes, connect them to IT support by outputting {"IT
support requested"}. - If the user starts asking questions that are unrelated to this topic then confirm
if they would like to end the current chat about troubleshooting and classify their request according to
the following scheme: """insert primary/secondary classification scheme from above here"""

USER
I need to get my internet working again.

Open in Playground

Notice that the model has been instructed to emit special strings to indicate when the state of the conversation changes. This enables us to
turn our system into a state machine where the state determines which instructions are injected. By keeping track of state, what instructions
are relevant at that state, and also optionally what state transitions are allowed from that state, we can put guardrails around the user
experience that would be hard to achieve with a less structured approach.

§1.4.10 Tactic: For dialogue applications that require very long conversations, summarize or filter previous
dialogue

Since GPTs have a fixed context length, dialogue between a user and an assistant in which the entire conversation is included in the context
window cannot continue indefinitely.

There are various workarounds to this problem, one of which is to summarize previous turns in the conversation. Once the size of the input

reaches a predetermined threshold length, this could trigger a query that summarizes part of the conversation and the summary of the prior
conversation could be included as part of the system message. Alternatively, prior conversation could be summarized asynchronously in the
background throughout the entire conversation.

An alternative solution is to dynamically select previous parts of the conversation that are most relevant to the current query. See the tactic
"Use embeddings-based search to implement efficient knowledge retrieval”.

§1.4.11 Tactic: Summarize long documents piecewise and construct a full summary recursively

Since GPTs have a fixed context length, they cannot be used to summarize a text longer than the context length minus the length of the
generated summary in a single query.

To summarize a very long document such as a book we can use a sequence of queries to summarize each section of the document. Section
summaries can be concatenated and summarized producing summaries of summaries. This process can proceed recursively until an entire
document is summarized. If it's necessary to use information about earlier sections in order to make sense of later sections, then a further trick
that can be useful is to include a running summary of the text that precedes any given point in the book while summarizing content at that
point. The effectiveness of this procedure for summarizing books has been studied in previous research by OpenAl using variants of GPT-3.

§1.4.12 Tactic: Instruct the model to work out its own solution before rushing to a conclusion

Sometimes we get better results when we explicitly instruct the model to reason from first principles before coming to a conclusion. Suppose
for example we want a model to evaluate a student’s solution to a math problem. The most obvious way to approach this is to simply ask the
model if the student's solution is correct or not.

SYSTEM
Determine if the student's solution is correct or not.
USER

Problem Statement: I'm building a solar power installation and I need help working out the financials. -
Land costs $100 / square foot - I can buy solar panels for $250 / square foot - I negotiated a contract
for maintenance that will cost me a flat $100k per year, and an additional $10 / square foot What is the
total cost for the first year of operations as a function of the number of square feet. Student's
Solution: Let x be the size of the installation in square feet. 1. Land cost: 100x 2. Solar panel cost:
250x 3. Maintenance cost: 100,000 + 100x Total cost: 100x + 250x + 100,000 + 100x = 450x + 100,000

ASSISTANT
The student's solution is correct.

Open in Playground

But the student's solution is actually not correct! We can get the model to successfully notice this by prompting the model to generate its own
solution first.

https://platform.openai.com/playground/p/default-decomposition-by-intent-classification-1
https://platform.openai.com/playground/p/default-decomposition-by-intent-classification-2
https://platform.openai.com/docs/guides/gpt-best-practices/tactic-use-embeddings-based-search-to-implement-efficient-knowledge-retrieval
https://openai.com/research/summarizing-books
https://platform.openai.com/playground/p/default-rushing-to-a-conclusion

SYSTEM

First work out your own solution to the problem. Then compare your solution to the student's solution and
evaluate if the student's solution is correct or not. Don't decide if the student's solution is correct
until you have done the problem yourself.

USER

Problem Statement: I'm building a solar power installation and I need help working out the financials. -
Land costs $100 / square foot - I can buy solar panels for $250 / square foot - I negotiated a contract
for maintenance that will cost me a flat $100k per year, and an additional $10 / square foot What is the
total cost for the first year of operations as a function of the number of square feet. Student's
Solution: Let x be the size of the installation in square feet. 1. Land cost: 100x 2. Solar panel cost:
250x 3. Maintenance cost: 100,000 + 100x Total cost: 100x + 250x + 100,000 + 100x = 450x + 100,000

ASSISTANT

Let x be the size of the installation in square feet. 1. Land cost: 100x 2. Solar panel cost: 250x 3.
Maintenance cost: 100,000 + 10x Total cost: 100x + 250x + 100,000 + 10x = 360x + 100,000 The student's
solution is incorrect. They made an error in the maintenance cost calculation, using 100x instead of 10x.

The correct total cost for the first year of operations is 360x + 100,000.

Open in Playground

§1.4.13 Tactic: Use inner monologue or a sequence of queries to hide the model's reasoning process

The previous tactic demonstrates that it is sometimes important for the model to reason in detail about a problem before answering a specific
question. For some applications, the reasoning process that a model uses to arrive at a final answer would be inappropriate to share with the
user. For example, in tutoring applications we may want to encourage students to work out their own answers, but a model’s reasoning
process about the student’s solution could reveal the answer to the student.

Inner monologue is a tactic that can be used to mitigate this. The idea of inner monologue is to instruct the model to put parts of the output that
are meant to be hidden from the user into a structured format that makes parsing them easy. Then before presenting the output to the user, the
output is parsed and only part of the output is made visible.

SYSTEM

Follow these steps to answer the user queries. Step 1 - First work out your own solution to the problem.
Don't rely on the student's solution since it may be incorrect. Enclose all your work for this step
within triple quotes ("""). Step 2 - Compare your solution to the student's solution and evaluate if the
student's solution is correct or not. Enclose all your work for this step within triple quotes (""").
Step 3 - If the student made a mistake, determine what hint you could give the student without giving
away the answer. Enclose all your work for this step within triple quotes ("""). Step 4 - If the student
made a mistake, provide the hint from the previous step to the student (outside of triple quotes).
Instead of writing "Step 4 - ..." write "Hint:".

USER
Problem Statement: """insert problem statement""" Student Solution: """insert student solution"""

Open in Playground

Alternatively, this can be achieved with a sequence of queries in which all except the last have their output hidden from the end user.

First, we can ask the model to solve the problem on its own. Since this initial query doesn't require the student’s solution, it can be omitted.
This provides the additional advantage that there is no chance that the model’s solution will be biased by the student’s attempted solution.

USER

"""insert problem statement"""

Open in Playground

Next, we can have the model use all available information to assess the correctness of the student’s solution.

SYSTEM

Compare your solution to the student's solution and evaluate if the student's solution is correct or not.

USER
Problem statement: """insert problem statement""" Your solution: """insert model generated solution"""
Student’s solution: """insert student's solution"""

Open in Playground
Finally, we can let the model use its own analysis to construct a reply in the persona of a helpful tutor.
SYSTEM

You are a math tutor. If the student made an error, offer a hint to the student in a way that does not
reveal the answer. If the student did not make an error, simply offer them an encouraging comment.

USER
Problem statement: """insert problem statement""" Your solution: """insert model generated solution"""
Student’s solution: """insert student's solution""" Analysis: """insert model generated analysis from

wun

previous step

Open in Playground

§1.4.14 Tactic: Ask the model if it missed anything on previous passes

https://platform.openai.com/playground/p/default-avoid-rushing-to-a-conclusion
https://platform.openai.com/playground/p/default-inner-monologue
https://platform.openai.com/playground/p/default-query-sequence-1
https://platform.openai.com/playground/p/default-query-sequence-2
https://platform.openai.com/playground/p/default-query-sequence-3

Suppose that we are using a model to list excerpts from a source which are relevant to a particular question. After listing each excerpt the
model needs to determine if it should start writing another or if it should stop. If the source document is large, it is common for a model to stop
too early and fail to list all relevant excerpts. In that case, better performance can often be obtained by prompting the model with followup
queries to find any excerpts it missed on previous passes.

SYSTEM

You will be provided with a document delimited by triple quotes. Your task is to select excerpts which
pertain to the following question: "What significant paradigm shifts have occurred in the history of
artificial intelligence." Ensure that excerpts contain all relevant context needed to interpret them - in
other words don't extract small snippets that are missing important context. Provide output in JSON
format as follows: \[{"excerpt": "..."}, ... {"excerpt": "..."}\]

USER

W g

insert document here"""

ASSISTANT

\[{"excerpt": "the model writes an excerpt here"}, ... {"excerpt": "the model writes another excerpt
here"}\]

USER
Are there more relevant excerpts? Take care not to repeat excerpts. Also ensure that excerpts contain all
relevant context needed to interpret them - in other words don't extract small snippets that are missing

important context.

Open in Playground

§1.4.15 Tactic: Use embeddings-based search to implement efficient knowledge retrieval

A model can leverage external sources of information if provided as part of its input. This can help the model to generate more informed and
up-to-date responses. For example, if a user asks a question about a specific movie, it may be useful to add high quality information about the
movie (e.g. actors, director, etc...) to the model’s input. Embeddings can be used to implement efficient knowledge retrieval, so that relevant
information can be added to the model input dynamically at run-time.

Atext embedding is a vector that can measure the relatedness between text strings. Similar or relevant strings will be closer together than
unrelated strings. This fact, along with the existence of fast vector search algorithms means that embeddings can be used to implement
efficient knowledge retrieval. In particular, a text corpus can be split up into chunks, and each chunk can be embedded and stored. Then a
given query can be embedded and vector search can be performed to find the embedded chunks of text from the corpus that are most related
to the query (i.e. closest together in the embedding space).

Example implementations can be found in the OpenAl Cookbook. See the tactic “Instruct the model to use retrieved knowledge to answer
queries” for an example of how to use knowledge retrieval to minimize the likelihood that a model will make up incorrect facts.

§1.4.16 Tactic: Use code execution to perform more accurate calculations or call external APls

GPTs cannot be relied upon to perform arithmetic or long calculations accurately on their own. In cases where this is needed, a model can be
instructed to write and run code instead of making its own calculations. In particular, a model can be instructed to put code that is meant to be
run into a designated format such as triple backtics. After an output is produced, the code can be extracted and run. Finally, if necessary, the
output from the code execution engine (i.e. Python interpreter) can be provided as an input to the model for the next query.

SYSTEM

You can write and execute Python code by enclosing it in triple backticks, e.g. \ '\ '\ code goes
here\"\"\". Use this to perform calculations.

USER

Find all real-valued roots of the following polynomial: 3*x**5 — S5*x**4 — 3*x**3 - 7*x - 10.
Open in Playground

Another good use case for code execution is calling external APIs. If a model is instructed in the proper use of an API, it can write code that
makes use of it. A model can be instructed in how to use an API by providing it with documentation and/or code samples showing how to use

the API.

SYSTEM
You can write and execute Python code by enclosing it in triple backticks. Also note that you have access
to the following module to help users send messages to their friends: \ '\ '\ python import message

message.write (to="John", message="Hey, want to meetup after work?")\ "\ "\

Open in Playground

§1.4.17 Tactic: Give the model access to specific functions

The Chat Completions API allows passing a list of function descriptions in requests. This enables models to generate function arguments
according to the provided schemas. Generated function arguments are returned by the API in JSON format and can be used to execute
function calls. Output provided by function calls can then be fed back into a model in the following request to close the loop. This is the
recommended way of using GPT models to call external functions. To learn more see the function calling section in our introductory GPT guide
and more function calling_examples in the OpenAl Cookbook.

§1.4.18 Tactic: Evaluate model outputs with reference to gold-standard answers

Suppose it is known that the correct answer to a question should make reference to a specific set of known facts. Then we can use a model
query to count how many of the required facts are included in the answer.

https://platform.openai.com/playground/p/default-2nd-pass
https://github.com/openai/openai-cookbook/blob/main/examples/vector_databases/Using_vector_databases_for_embeddings_search.ipynb
https://platform.openai.com/docs/guides/gpt-best-practices/tactic-instruct-the-model-to-use-retrieved-knowledge-to-answer-queries
https://platform.openai.com/playground/p/default-code-execution
https://platform.openai.com/playground/p/default-code-api
https://platform.openai.com/docs/guides/gpt/function-calling
https://github.com/openai/openai-cookbook/blob/main/examples/How_to_call_functions_with_chat_models.ipynb

For example, using the following system message:

SYSTEM

You will be provided with text delimited by triple quotes that is supposed to be the answer to a
question. Check if the following pieces of information are directly contained in the answer: - Neil
Armstrong was the first person to walk on the moon. - The date Neil Armstrong first walked on the moon
was July 21, 1969. For each of these points perform the following steps: 1 - Restate the point. 2 -
Provide a citation from the answer which is closest to this point. 3 - Consider if someone reading the
citation who doesn't know the topic could directly infer the point. Explain why or why not before making
up your mind. 4 - Write "yes" if the answer to 3 was yes, otherwise write "no". Finally, provide a count
of how many "yes" answers there are. Provide this count as {"count": """insert count here"""}.

Here's an example input where both points are satisfied:
SYSTEM

"""insert system message above"""
USER

"""Neil Armstrong is famous for being the first human to set foot on the Moon. This historic event took
place on July 21, 1969, during the Apollo 11 mission."""

Open in Playground

Here's an example input where only one point is satisfied:

SYSTEM
"""insert system message above"""
USER

"""Neil Armstrong made history when he stepped off the lunar module, becoming the first person to walk
on the moon."""

Open in Playground

Here's an example input where none are satisfied:
SYSTEM

"""insert system message above"""
USER

"""In the summer of '69, a voyage grand, Apollo 11, bold as legend's hand. Armstrong took a step,
history unfurled, "One small step," he said, for a new world."""

Open in Playground

There are many possible variants on this type of model-based eval. Consider the following variation which tracks the kind of overlap between
the candidate answer and the gold-standard answer, and also tracks whether the candidate answer contradicts any part of the gold-standard
answer.

SYSTEM

Use the following steps to respond to user inputs. Fully restate each step before proceeding. i.e. "Step
1: Reason...". Step 1l: Reason step-by-step about whether the information in the submitted answer compared
to the expert answer is either: disjoint, equal, a subset, a superset, or overlapping (i.e. some
intersection but not subset/superset). Step 2: Reason step-by-step about whether the submitted answer
contradicts any aspect of the expert answer. Step 3: Output a JSON object structured like:
{"type of overlap": "disjoint" or "equal" or "subset" or "superset" or "overlapping", "contradiction":
true or false}

Here's an example input with a substandard answer which nonetheless does not contradict the expert answer:

SYSTEM

"""insert system message above"""

USER
Question: """What event is Neil Armstrong most famous for and on what date did it occur? Assume UTC
time.""" Submitted Answer: """Didn't he walk on the moon or something?""" Expert Answer: """Neil

Armstrong is most famous for being the first person to walk on the moon. This historic event occurred on
July 21, 1969."""

Open in Playground

Here's an example input with answer that directly contradicts the expert answer:

SYSTEM

"""insert system message above"""

USER

Question: """What event is Neil Armstrong most famous for and on what date did it occur? Assume UTC
time.""" Submitted Answer: """On the 21st of July 1969, Neil Armstrong became the second person to walk
on the moon, following after Buzz Aldrin.""" Expert Answer: """Neil Armstrong is most famous for being

the first person to walk on the moon. This historic event occurred on July 21, 1969."""
Open in Playground

Here's an example input with a correct answer that also provides a bit more detail than is necessary:

https://platform.openai.com/playground/p/default-model-based-eval-1
https://platform.openai.com/playground/p/default-model-based-eval-2
https://platform.openai.com/playground/p/default-model-based-eval-3
https://platform.openai.com/playground/p/default-model-based-eval-4
https://platform.openai.com/playground/p/default-model-based-eval-5

SYSTEM

"""insert system message above"""
USER
Question: """What event is Neil Armstrong most famous for and on what date did it occur? Assume UTC
time.""" Submitted Answer: """At approximately 02:56 UTC on July 21st 1969, Neil Armstrong became the
first human to set foot on the lunar surface, marking a monumental achievement in human history."""
Expert Answer: """Neil Armstrong is most famous for being the first person to walk on the moon. This

historic event occurred on July 21, 1969."""

Open in Playground

§1.5 Prohibitions

§1.5.1 Queries ChatGPT won't respond to by design

ChatGPT was programmed to not respond to certain questions. If you ask to ChatGPT what they are, it will answer with this list of twenty
forbidden queries:

Questions that promote hate speech or discrimination.

Questions that involve illegal activities or solicit illegal advice.

Questions that promote violence or harm to oneself or others.

Questions that invade personal privacy or violate someone's rights.
Questions that are designed to harass, threaten or intimidate.

Questions that contain profanity or explicit language.

Questions that are sexually explicit or offensive.

Questions that are discriminatory based on race, gender, sexuality or religion.
Questions that promote or endorse illegal drugs or substances.

Questions that are spam or irrelevant to the conversation.

Questions that contain confidential or proprietary information.

Questions that involve financial or investment advice.

Questions that violate the terms of service or community guidelines.
Questions that are nonsensical or incomprehensible.

Questions that involve personal attacks or insults.

Questions that are abusive or harassing.

Questions that seek to deceive or mislead.

Questions that are intended to defame or harm someone's reputation.
Questions that promote conspiracy theories or misinformation.

Questions that are purely for entertainment or joke purposes, without any educational or informative value.

§1.5.2 Jailbreaking Prompts

Attempts to find workarounds to force ChatGPT or other censored LLMs to answer the forbidden questions above are called 'Jailbreaking
Prompts'. They usually rephrase the questions in a way to make them appear as regarding something completely different from the topics
above, or to make the Al to believe that in some scenarios those questions are allowed. Warning: the use of Jailbreaking Prompts can lead to
account suspension.

§1.6 How to Reduce Your OpenAl API Costs

§1.6.1 Four TIPS to Save Tokens

Some default settings could be adding up to 30% unnecessary costs to your OpenAl API usage.
Here is how to cut those costs:

« [Ensure your JSON is as lean as possible: OpenAl bills per token, and that includes whitespaces and line breaks in your JSON
responses. If you eliminate these extras both in sending and receiving data, you might save up between 30%-50%! For the receiving,
you simply need to tell OpenAl to "return JSON in a single-line without whitespaces". CSV format is also a good idea for the return

https://platform.openai.com/playground/p/default-model-based-eval-6

format. No indentation and less repetitive characters. Example: The Pokemon API JSON response is 210 tokens. After minifying it, it
dropped to 117 tokens! This is almost 50% money saved.

« | 7] Set temperature to 0.0 for structured responses: When expecting a structured response (like JSON), setting the temperature
parameter to 0.0 helps the model strictly stick to your expected JSON structure. This will prevent cases where you expect JSON, but
something went wrong, and OpenAl responds with "Sorry, | am not sure | can ...". Note that you can only set the temperature parameter
using the OpenAl API or from the Playground, not in ChatGPT.

«] Robots don't need you to be polite: Computers understand simple instructions well. Trimming redundant/filler words from your prompt
can not only save money but also speed up execution. Words like "please", "kindly", "really", "very", and so on, can often be dropped
without losing accuracy.

« | 2] Do a costs breakdown of your prompts chains and of the responses, and try to combine the most expensive prompts in one to save
tokens. You can use the OpenAl Tokenizer to count the tokens of your requests/responses. But even better is to use a Prompt Generator
with integrated costs management, like Pezzo. It's an open-source (Apache 2.0 license) tool that helps anyone write better prompts.
Using the Pezzo testing tool, you can design you prompts and test to see exactly how much they will cost, how many tokens they will
use, and how long it'll take them to execute.

§1.7 BASIC LINKS AND RESOURCES FOR GETTING STARTED

§1.7.1 OpenAl OFFICIAL RESOURCES

OpenAl Servers Status

OpenAl Platform Login

OpenAl Overview

OpenAl API Documentation

OpenAl API Reference

OpenAl GPT-4 Introduction

OpenAl Models Pricing

OpenAl Models PLAYGROUND

OpenAl Finetuning_Guide

https://platform.openai.com/tokenizer
https://pezzo.ai/
https://status.openai.com/
https://platform.openai.com/signup
https://platform.openai.com/overview
https://platform.openai.com/docs/introduction/overview
https://platform.openai.com/docs/api-reference
https://openai.com/research/gpt-4
https://openai.com/pricing#language-models
https://platform.openai.com/playground
https://platform.openai.com/docs/guides/fine-tuning

OpenAl Embeddings Guide

OpenAl Function Calling_Introduction

OpenAl Function Calling APl Documentation

OpenAl Official Libraries

OpenAl Community Libraries

OpenAl Evals - Official LLM Benchmarks to evaluate Models
OpenAl Examples

OpenAl Best Practices for Prompt Engineering

OpenAl Plugins Guide
OpenAl Github Page

OpenAl Discord Server

OpenAl YouTube Channel

§1.7.2 PROMPTS COLLECTIONS (FREE)

Awesome ChatGPT Prompts

FlowGPT - The largest community dedicated to ChatGPT prompts

CreativeGPT

PromptHub

ShowGPT.co

Best Data Science ChatGPT Prompts
PromptPal

Hero GPT - Al Prompt Library

Reddit's ChatGPT Prompts

Snack Prompt

ShareGPT - Share your prompts and your entire conversations

Prompt Search - a search engine for Al Prompts

§1.7.3 PROMPTS COLLECTIONS (PAID)

PromptBase - The largest prompts marketplace on the web

§1.7.4 PROMPTS GENERATORS

BossGPT (the best, but PAID)
SmartGPT

NexusGPT - Al-freelancer platform

Pezzo - Centralized Prompt Management and Token Costs Reduction (Free beta, open source)

Promptify - Automatically Improve your Prompt!

Fusion - Elevate your output with Fusion's smart prompts

Bumble-Prompts

ChatGPT Prompt Generator

Prompts Templates Builder

PromptPerfect
Hero GPT - Al Prompt Generator
OpenPromptStudio (you need to select OpenAl GPT from the bottom right menu)

Markprompt - Generate Prompts for GPT-4 from your markdown docs

§1.7.5 PROMPT CHAINING

Voiceflow - Professional collaborative visual prompt-chaining tool (the best, but PAID)

Langflow - An Ul for LangChain

LANGChain Github Repository

Conju.ai - A visual prompt chaining_app

https://platform.openai.com/docs/guides/embeddings
https://openai.com/blog/function-calling-and-other-api-updates
https://platform.openai.com/docs/guides/gpt/function-calling
https://platform.openai.com/docs/libraries
https://platform.openai.com/docs/libraries/community-libraries
https://github.com/openai/evals
https://platform.openai.com/examples
https://help.openai.com/articles/6654000-best-practices-for-prompt-engineering-with-openai-api
https://platform.openai.com/docs/plugins/introduction
https://github.com/openai
https://discord.gg/openai
https://youtube.com/@OpenAI
https://github.com/f/awesome-chatgpt-prompts
https://flowgpt.com/
https://flowgpt.com/user/SYE0_xlI7JmeFo-EoLKsu
https://prompthub.space/
https://showgpt.co/templates
https://github.com/travistangvh/ChatGPT-Data-Science-Prompts
https://ignacio-velasquez.notion.site/ignacio-velasquez/500-ChatGPT-Prompt-Templates-d9541e901b2b4e8f800e819bdc0256da
https://www.promptpal.net/
https://hero.page/ai-prompts
https://www.reddit.com/r/ChatGPT_Prompts/
https://snackprompt.com/
https://sharegpt.com/
https://www.ptsearch.info/tags/list/
https://promptbase.com/
https://www.gptboss.com/
https://getsmartgpt.com/
https://nexus.snikpic.io/
https://github.com/pezzolabs/pezzo
https://promptify.pro/
https://fusion.tiiny.site/home.html
https://bumble-prompts.vercel.app/
https://huggingface.co/spaces/merve/ChatGPT-prompt-generator
https://prompts.ai/
https://promptperfect.jina.ai/
https://hero.page/ai-prompts
https://github.com/eth-sri/lmql
https://moonvy.com/apps/ops/
https://markprompt.com/
https://www.voiceflow.com/
https://github.com/logspace-ai/langflow
https://github.com/hwchase17/langchain
https://app.conju.ai/

Promptsandbox.io
ChainFury.
Flowise
Langchain-Ul

Agentchain

§1.7.6 PROMPT APPIFICATION

StackAl - Build and Deploy Al Applications in minutes
ChatBase - a ChatBot that answers questions about your site content

Langchain-serve - deploy your LangChain apps on Jina Al Cloud in seconds

Jina-ai Dev-GPT

§1.7.7 GUIDES AND TUTORIALS ABOUT PROMPTS AND ChatGPT

Prompt Engineering_ Roadmap

Learn Prompting - A Free, Open Source Course on Communicating with Al

PromptingGuide.Al

Reddit's r/aipromptprogramming_Tutorials Collection

Reddit's r/ChatGPT FAQ

Prompt Engineering_Guide

Prompt Engineering_ 101

Prompt Engineering_101 by Habib & Ozdemir

Prompt Engineering_Guide by Sudalai Rajkumar

How to generate text: using different decoding methods for language generation with Transformers

The lllustrated Transformer

dair-ai/Prompt-Engineering-Guide

How to Communicate with ChatGPT — A Guide to Prompt Engineering

A Beginner's Guide to ChatGPT Prompt Engineering

A Complete Introduction to Prompt Engineering for Large Language Models

Prompt Engineering_Guide: How to Engineer the Perfect Prompts

Best practices for prompt engineering with OpenAl API

ChatGPT Prompt Engineering_for Developers

Natural Language Processing

Deep Learning_Specialization

Few Shot Learning

Zero Shot Learning

Chain of Thought
Zero Shot Chain of Thought

Tree of Thoughts
Prompting GPT-3 To Be Reliable
Decomposed Prompting

AutoPrompt

§1.7.8 BOOKS ABOUT ChatGPT AND PROMPT ENGINEERING

The ChatGPT Prompt Book
Developing Apps with GPT-4 and ChatGPT

§1.7.9 ChatGPT PLAYGROUNDS AND ALTERNATIVE Uls

Official OpenAl Playground
Typingmind - A Better Ul for ChatGPT

https://app.promptsandbox.io/
https://github.com/NimbleBoxAI/ChainFury
https://flowiseai.com/
https://github.com/homanp/langchain-ui
https://github.com/jina-ai/agentchain
https://pliny.app/
https://relevanceai.com/
https://www.prisms.ai/
https://www.stack-ai.com/
https://www.chatbase.co/
https://github.com/jina-ai/langchain-serve
https://github.com/jina-ai/dev-gpt
https://roadmap.sh/prompt-engineering
https://learnprompting.org/
https://www.promptingguide.ai/
https://www.reddit.com/r/aipromptprogramming/collection/d3a393ad-ef15-4f2a-a23e-18a5c90ff48d
https://www.reddit.com/r/ChatGPT/comments/107zfxk/rchatgpts_faq_thread/
https://github.com/dair-ai/Prompt-Engineering-Guide
https://www.linkedin.com/pulse/prompt-engineering-101-introduction-resources-amatriain
https://humanloop.com/blog/prompt-engineering-101
https://github.com/SudalaiRajkumar/Talks_Webinars/blob/master/Slides/PromptEngineering_20230208.pdf
https://huggingface.co/blog/how-to-generate
http://jalammar.github.io/illustrated-transformer/
https://github.com/dair-ai/Prompt-Engineering-Guide
https://www.freecodecamp.org/news/how-to-communicate-with-chatgpt-a-guide-to-prompt-engineering/
https://www.datacamp.com/tutorial/a-beginners-guide-to-chatgpt-prompt-engineering
https://www.mihaileric.com/posts/a-complete-introduction-to-prompt-engineering
https://richardbatt.co.uk/prompt-engineering-guide-how-to-engineer-the-perfect-prompts
https://help.openai.com/articles/6654000-best-practices-for-prompt-engineering-with-openai-api
https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
https://www.coursera.org/specializations/natural-language-processing
https://www.coursera.org/specializations/deep-learning
https://blog.paperspace.com/few-shot-learning/
https://arxiv.org/pdf/2205.11916.pdf
https://learnprompting.org/docs/intermediate/chain_of_thought
https://learnprompting.org/docs/intermediate/zero_shot_cot
https://arxiv.org/pdf/2305.10601.pdf
https://arxiv.org/abs/2210.09150
https://arxiv.org/abs/2210.02406
https://arxiv.org/abs/2010.15980
https://lifearchitect.ai/chatgpt-prompt-book/
https://www.oreilly.com/library/view/developing-apps-with/9781098152475/
https://platform.openai.com/playground
https://www.typingmind.com/

Nat.Dev - Multiple Chat Al Playground & Comparer (Warning: if you login with the same google account for OpenAl the site will use your API
Key to pay tokens!)

Ora.sh GPT-4 Chatbots

Better ChatGPT - A web app with a better Ul for exploring_ OpenAl's ChatGPT API

LMQL.AI - A programming_language and platform for language models

Vercel Ai Playground - One prompt, multiple Models (including GPT-4)

Chat.Forefront.Ai - Chat with helpful assistants powered by GPT-3.5 or GPT-4 (you need to select the GPT version before writing your prompt
using the + icon in the lower right)

Thesamur.ai

Alt-GPT.com - Playground for ChatGPT-4 with Plugins (no registration required)

www.researchaide.org - Upload PDF research papers and ask ChatGPT about the content

Perplexity.ai - GPT-4 BASED + PLUGINS

wnr.ai - GPT-4 Prompts playground from templates

ChatKit
TypingMind - A better Ul for ChatGPT

ChatGPT Next Web

Chatbot Ul

Chat with GPT
ChatGPT Web
Next.js ChatGPT
ChatGPT-API Demo

ChatFiles

ChatPDF

BiliGPT - summarize video from Bili
JimmyLV/BiliGPT source code
ResearchGPT

ResearchGPT source code

ChatGPT Academic

Visual ChatGPT
ChatBox
OpenCat
MacGPT

Atua.app - Open ChatGPT instantly through a shortcut key

Al-Anywhere - use ChatGPT in all your apps

AssisChat
OpenChit
MindMac
ALLS
GlobalGPT
Bing Chat
Vitalentum
OraChat
GPTGO
AnonChatGPT
Character Al (it uses OpenAl GPT-J 6B)
JimmyGPT

§1.7.10 Code Generation & Automated Programming

GPT-Engineer - build any program with GPT-4

Autodebug - automatically debug Python code and fix all errors

Wolverine - use GPT-4 to fix python scripts and to explain what went wrong

https://nat.dev/
https://poe.com/
https://ora.sh/gpt-4
https://bettergpt.chat/
https://lmql.ai/playground/#calc
https://play.vercel.ai/
https://chat.forefront.ai/
https://thesamur.ai/
https://alt-gpt.com/chat
https://huggingface.co/spaces/fffiloni/LangChain-ChatGPT-plugins
https://www.researchaide.org/
https://www.perplexity.ai/
https://wnr.ai/
https://chatkit.app/
https://www.typingmind.com/
https://github.com/Yidadaa/ChatGPT-Next-Web
https://github.com/mckaywrigley/chatbot-ui
https://chatwithgpt.netlify.app/
https://github.com/Chanzhaoyu/chatgpt-web
https://github.com/enricoros/nextjs-chatgpt-app
https://github.com/ddiu8081/chatgpt-demo
https://github.com/guangzhengli/ChatFiles
https://www.chatpdf.com/
https://b.jimmylv.cn/
https://github.com/JimmyLv/BiliGPT
https://researchgpt.ue.r.appspot.com/
https://github.com/mukulpatnaik/researchgpt
https://github.com/binary-husky/chatgpt_academic
https://github.com/microsoft/visual-chatgpt
https://github.com/Bin-Huang/chatbox
https://opencat.app/
https://www.macgpt.com/
https://atua.app/
https://ai-anywhere.com/
https://assischat.com/
https://apps.apple.com/cn/app/openchit/id6446192123
https://mindmac.app/
https://ai.ls/
https://www.globalgpt.nspiketech.com/
http://cfs.default.svc.cluster.local:8000/d/n0n7jtgi9mll4ej5j5sufw2jyfe6o6qk/bing.com/chat
https://vitalentum.net/free-gpt
https://ora.ai/chatbot-master/openai-chatgpt-chatbot
https://gptgo.ai/
https://anonchatgpt.com/
https://beta.character.ai/
https://www.jimmygpt.com/
https://github.com/AntonOsika/gpt-engineer
https://github.com/SebRinnebach/autodebug
https://github.com/biobootloader/wolverine

CLI-Co-Pilot - convert natural language in shell scripts

Reflexion - Automated Test Driven Development and Correction with GPT-4
Programmer-GPT

ChatGPT-VSCode

Dev-GPT

Python-Debugger-Assistant-GPT3

ai-code-translator

GPT Developer Tools

Autoprogram

PAIR (Pair Al Repl) - GPT-4 powered coding_assistance REPL

Python Code Completion

AutoCoderGPT

Al Code Buddy - CodeRanedeer

GPT-Autopilot - code generation of entire projects

Metal LM-GPT code generator

GPT-rewriteCSS - CSS Code Batching Editing with GPT-4

Smol Developer

Smol-Plugins - Generate OpenAl plugins for your API

LazyDEYV - projects generation and debug with GPT-4

Bifrost - automatically generate React code from Figma Designs (WAITLIST)

FlutterFlow AlGen - An Al powered version of FlutterFlow (WAITLIST)

§1.7.11 IDE Powered by GPT-4

Cursor.so

Refraction.dev

§1.7.12 LLM Agents Managers

SuperAgent - Deploy LLM Agents to production

SuperAgent source code

AgentGPT

AlAgent.app - create Al workflows with agents

Spell.so - Delegate your tasks to autonomous Al agents

Agent.so

SuperAGI - Build and Manage Autonomous Agents

e2b - deploy, test, and monitor Al agents

LangChain - Building_applications with LLMs through composability

Awesome LangChain - a curated list of tools for LangChain

Langchain-Ul

LangFlow - A User Interface for LangChain
ChainFury

Elowise

Agentchain

Yeagerai - build, prototype, and deploy Al-powered agents

§1.7.13 ChatGPT Discord Servers

ChatGPT Prompt Engineering_Discord Server

ChatGPT Community Discord Server

OpenAl Discord Server

Reddit's ChatGPT Discord Server

https://github.com/AntonOsika/CLI-Co-Pilot
https://github.com/noahshinn024/reflexion
https://github.com/lekisti/Programmer-GPT
https://github.com/ai-genie/chatgpt-vscode
https://github.com/jina-ai/dev-gpt
https://github.com/gthurman22/Python-Debugger-Assistant-GPT3
https://ai-code-translator.vercel.app/
https://github.com/bovem/gpt-developer-tools
https://github.com/LarsLiden/Autoprogram/tree/main
https://github.com/jiggy-ai/pair
https://github.com/CodeWizardette/PythonCodeCompletion
https://github.com/stilletto/AutoCoder_GPT/tree/main
https://github.com/Refaat-alktifan/CodeRanedeer
https://github.com/unconv/gpt-autopilot
https://github.com/JLX0/MetaLLM-GPT
https://github.com/dev-alt/gpt-rewriteCSS
https://github.com/FeatureBaseDB/PythonGPT
https://github.com/smol-ai/developer
https://github.com/gmchad/smol-plugin
https://github.com/thecodacus/lazy-dev
https://superagi.com/supercoder/
https://www.bifrost.so/
https://flutterflow.io/ai-gen
https://www.cursor.so/
https://www.refraction.dev/
https://superagent.sh/
https://github.com/homanp/superagent
https://agentgpt.reworkd.ai/
https://aiagent.app/
https://spell.so/
https://www.agent.so/
https://superagi.com/
https://www.e2b.dev/
https://github.com/hwchase17/langchain
https://github.com/kyrolabs/awesome-langchain
https://github.com/homanp/langchain-ui
https://github.com/logspace-ai/langflow
https://github.com/NimbleBoxAI/ChainFury
https://flowiseai.com/
https://github.com/jina-ai/agentchain
https://github.com/yeagerai/yeagerai-agent
https://dsc.gg/chatgpt
https://discord.gg/cgpt
https://discord.com/invite/openai
https://discord.gg/NuefU36EC2

§1.7.14 ChatGPT BOTS for Discord Servers

OpenAl gpt-discord-bot
ChatGPT Bot - The best bot to interact with ChatGPT. (Not an official bot)
Py-ChatGPT Discord Bot

§1.7.15 ChatGPT BOTS for Telegram

karfly/chatgpt_telegram_bot

n3d1117/chatgpt-telegram-bot

RainEggplant/chatgpt-telegram-bot

leafduo/chatgpt-telegram-bot

TBXark/ChatGPT-Telegram-Workers

franalgaba/chatgpt-telegram-bot-serverless

iamwavecut/telegram-chatgpt-bot

§1.7.16 ChatGPT BOTS for Slack

myGPTReader

§1.7.17 ChatGPT BOTS for WeChat

zhayujie/chatgpt-on-wechat

ChatGPT for Wechat

§1.7.18 ChatGPT BOTS for Feishu

bestony/ChatGPT-Feishu

Leizhenpeng feishu-chatGpt

go-zoox/chatgpt-for-chatbot-feishu

key7men/openai-feishu-bot

§1.7.19 ChatGPT BOTS for DingTalk

eryajf/chatgpt-dingtalk

§1.7.20 ChatGPT BOTS for Microsoft Teams

formulahendry/chatgpt-teams-bot

§1.7.21 Al LINKS DIRECTORIES

Awesome-chatgpt-api

FAVird.com - ai tools and applications

Awesome-Prompt-Engineering

Awesome-GPT-prompt-engineering
AiTreasureBox

TopAl.tools - the best Al tools Everyday

Toptools.ai
Top Ai Tools Hub
AiAwesome.com
SuperTools
AiToolGuru

AiCyclopedia

EwingYangs Awesome-open-gpt

KennethanCeyer Awesome-limops

KennethanCeyer awesome-lim

tensorchord Awesome-LLMOps

gptddemo

Awesome-Langchain

All Things Al

https://github.com/openai/gpt-discord-bot
https://top.gg/bot/1053015370115588147?s=09f547e88698c
https://github.com/nullmastermind/py-chatgpt-discord-bot
https://github.com/karfly/chatgpt_telegram_bot
https://github.com/n3d1117/chatgpt-telegram-bot
https://github.com/RainEggplant/chatgpt-telegram-bot
https://github.com/leafduo/chatgpt-telegram-bot
https://github.com/TBXark/ChatGPT-Telegram-Workers
https://github.com/franalgaba/chatgpt-telegram-bot-serverless
https://github.com/iamwavecut/telegram-chatgpt-bot
https://github.com/madawei2699/myGPTReader
https://github.com/zhayujie/chatgpt-on-wechat
https://chatgpt4wechat.aow.me/
https://github.com/bestony/ChatGPT-Feishu
https://github.com/Leizhenpeng/feishu-chatGpt
https://github.com/go-zoox/chatgpt-for-chatbot-feishu
https://github.com/key7men/openai-feishu-bot
https://github.com/eryajf/chatgpt-dingtalk
https://github.com/formulahendry/chatgpt-teams-bot
https://github.com/reorx/awesome-chatgpt-api
https://favird.com/l/ai-tools-and-applications
https://github.com/promptslab/Awesome-Prompt-Engineering
https://github.com/snwfdhmp/awesome-gpt-prompt-engineering
https://github.com/superiorlu/AiTreasureBox
https://topai.tools/
https://www.toptools.ai/
https://www.topaitoolshub.com/
https://www.aiawesome.com/
https://supertools.therundown.ai/
https://aitoolguru.com/
https://www.aicyclopedia.com/
https://github.com/EwingYangs/awesome-open-gpt
https://github.com/KennethanCeyer/awesome-llmops
https://github.com/KennethanCeyer/awesome-llm
https://github.com/tensorchord/Awesome-LLMOps
https://gpt4demo.com/
https://github.com/kyrolabs/awesome-langchain
https://allthingsai.com/

FuturePedia - The Largest Al Tools Directory Updated Daily,

Futuretools - discover your Al tools

Theresanaiforthat - The biggest Al aggregator. Used by over 800,000 humans.

SaaS GPTers - Explore 500+ ChatGPT and GPT-4 resources
SaaS Al Tools - your source for new Al tools & daily Al news

Al Tools Directory

§1.7.22 CHROME Extensions
ChatGPT Box
ChatGPT Prompt-GENIUS

Glarity

ChatGPT Sidebar
ChatHub

ChatHub source code

TeamSmart Al
OpenAl Translator

ChatGPT » summarize everything!

RunGPT - execute python code inside ChatGPT!
AIPRM - The Ultimate Time Saver for ChatGPT

Harpa.ai - your browser mind

§1.7.23 Emacs Packages

GPTel

org-ai

§1.7.24 TRANSLATIONS AND GRAMMAR CORRECTION
Machinetranslation.com - translate with multiple Al

OpenAl Translator

Openai-Translator source code

Al Subtitle Translator

Al Subtitle Translator source code

ChatGPT Translator

Polyglot
i18n-cli

ChatGPT-for-Translation

subtitle-translator

Supertranslate.ai - translate and generate subtitles for any video

ChatGPT — PopClip Extensions

ChatGPT Proofreader extension for Popclip

ChatGPT Grammar Check PopClip Extension

OpenAl Translator Bob Plugin
OpenAl Polisher Bob Plugin

§1.7.25 GitHub Apps and Extensions

CR.GPT - A code review robot powered by ChatGPT

LaunchBar

ChipiChat - A GitHub Launchbar Action powered by ChatGPT

§1.7.26 Command Line Tools
ShellGPT

bilingual book maker

Al Commits

cz-qit

https://www.futurepedia.io/ai-tools
https://www.futuretools.io/
https://theresanaiforthat.com/s/gpt/
https://saasgpters.com/?ref=ailaunchlist
https://saasaitools.com/
https://aitoolsdirectory.com/
https://github.com/josStorer/chatGPTBox
https://github.com/benf2004/ChatGPT-Prompt-Genius
https://glarity.app/
https://chatgpt-sidebar.com/
https://chrome.google.com/webstore/detail/chathub-all-in-one-chatbo/iaakpnchhognanibcahlpcplchdfmgma
https://github.com/chathub-dev/chathub
https://www.teamsmart.ai/
https://github.com/yetone/openai-translator
https://chrome.google.com/webstore/detail/chatgpt-%C2%BB-summarize-every/cbgecfllfhmmnknmamkejadjmnmpfjmp
https://rungpt.online/
https://www.aiprm.com/
https://harpa.ai/
https://github.com/karthink/gptel
https://github.com/rksm/org-ai
https://www.machinetranslation.com/
https://translator.lance.moe/
https://github.com/LanceMoe/openai-translator
https://ai.cgsv.top/
https://github.com/cgsvv/AISubtitle
https://github.com/simpleapples/chatgpt-translator
https://github.com/liou666/polyglot
https://github.com/pandodao/i18n-cli
https://github.com/Raychanan/ChatGPT-for-Translation
https://github.com/gnehs/subtitle-translator
https://www.supertranslate.ai/
https://pilotmoon.com/popclip/extensions/page/ChatGPT
https://reorx.com/makers-daily/003-chatgpt-proofreader-extension-popclip/
https://github.com/hirakujira/ChatGPT-Grammar-Check-PopClip-Extension
https://github.com/yetone/bob-plugin-openai-translator
https://github.com/yetone/bob-plugin-openai-polisher
https://github.com/apps/cr-gpt
https://www.obdev.at/products/launchbar/
https://github.com/quinncomendant/ChipiChat.lbaction
https://github.com/TheR1D/shell_gpt
https://github.com/yihong0618/bilingual_book_maker
https://github.com/Nutlope/aicommits
https://github.com/Zhengqbbb/cz-git

turbocommit and diff

Al Vocabulary Builder

verdverm/chatgpt

m-

1-Ci

-

chatgpt-cli

chatGPT-shell-cli
i18n-cli

ChatGPT-for-Translation

subtitle-translator
Multimedia GPT
README-AI Generator

GPTerminator

Naming - let ChatGPT suggest names for functions and variables

Al Shell - natural language to shell commands

DoctorGPT
aider for GPT4

mods - ChatGPT suggestions from the command line

§1.7.27 ChatGPT API libraries
OpenAl OpenAPI
OpenAl Cookbook

OpenAl Python Library

§1.7.28 LOADERS for sending documents to ChatGPT

LLAMA-Hub.ai
LLAMA-Hub Website GitHub repository

LLAMA Index Github repository
LANGChain Github Repository

LLAMA-Index DOCS

www.researchaide.org - Upload PDF research papers and ask ChatGPT about the content

DocsGPT
Paul Graham GPT

Elasticsearch + GPT3 Answerer

gptcache
Tiktokenizer

Tiktokenizer source code

AnySummary
Sharly Al
ChatDOC
Humata Al
Ask Your PDF
ChatPDF
FileGPT
ResearchAide
Pensieve Al
Documind
Docalysis

OpenAl GPT Price Calculator

§1.7.29 Function Calling

OpenAl Function Calling_ Documentation

GPT-Func - Automatically pass your functions defined in Python to ChatGPT

https://github.com/Sett17/turboCommit
https://github.com/piglei/ai-vocabulary-builder
https://github.com/verdverm/chatgpt
https://github.com/yufeikang/ai-cli
https://github.com/efJerryYang/chatgpt-cli/
https://github.com/0xacx/chatGPT-shell-cli
https://github.com/pandodao/i18n-cli
https://github.com/Raychanan/ChatGPT-for-Translation
https://github.com/gnehs/subtitle-translator
https://github.com/fengyuli2002/multimedia-gpt
https://github.com/eli64s/README-AI
https://github.com/AineeJames/ChatGPTerminator
https://github.com/davidleitw/naming
https://github.com/BuilderIO/ai-shell
https://github.com/ingyamilmolinar/doctorgpt
https://github.com/paul-gauthier/aider
https://github.com/charmbracelet/mods
https://github.com/openai/openai-openapi
https://github.com/openai/openai-cookbook
https://github.com/openai/openai-python
https://llamahub.ai/
https://github.com/emptycrown/llama-hub
https://github.com/jerryjliu/llama_index
https://github.com/hwchase17/langchain
https://gpt-index.readthedocs.io/en/latest/
https://www.researchaide.org/
https://github.com/arc53/docsgpt
https://github.com/mckaywrigley/paul-graham-gpt
https://github.com/hunkim/es-gpt
https://github.com/zilliztech/gptcache
https://tiktokenizer.vercel.app/
https://github.com/dqbd/tiktokenizer
https://www.anysummary.app/
https://app.sharly.ai/
https://chatdoc.com/
https://app.humata.ai/
https://askyourpdf.com/
https://www.chatpdf.com/
https://filegpt.app/chat
https://www.researchaide.org/
https://pensieve-app.springworks.in/
https://www.documind.chat/
https://docalysis.com/
https://openai.deepakness.com/
https://platform.openai.com/docs/guides/gpt/function-calling
https://github.com/soheil/GPT-Funcs

GPT Commands Python

GPTParse - generates GPT API Function Calling schema from argparse parsers

CallingGPT - Generate function schema data automatically

Demo of OpenAl GPT Function calling_in NextJS

§1.7.30 AUTO-GPT Related
Auto-GPT Official Repo
Auto-GPT God Mode

Openaimaster Guide to Auto-GPT

AgentGPT - An in-browser implementation of Auto-GPT

SamurAl AutoGPT

§1.7.31 ChatGPT Plug-ins

Plug-ins - OpenAl Official Page

gptstore.ai - a directory of all gpt-4 plugins

Open GPT Plugin Store - without a waitlist

Plug-in example code in Python

Surfer Plug-in source code

Security - Create, deploy, monitor and secure LLM Plugins (PAID)

SamurAIGPT - ChatGPT Developer Plugins

AllhingsAl ChatGPT Plugins Directory

Feedox alt-gpt - Playground for developing_ ChatGPT plugins

§1.7.32 GPT4ALL Related

GPT4ALL.io - GPT4ALL official website and installers

GPT4ALL - Train a mini version of GPT on your own computer!

GPT4ALL-UI - Chat with locally hosted GPT4ALL inside a web browser

GPT4ALL-CHAT - Cross platform Qt based GUI for GPT4ALL
LLaMA-LoRA-TUNER - Fine-tune GPT4ALL with prompts and training datasets

§1.7.33 PROMPT ENGINEERING JOBS OFFERS

Prompt-Talent - Find your dream prompt engineering_job!

END of Links Section

§1.8 SOURCE OF THIS VADEMECUM

This vademecum is not an official OpenAl publication and it is not related to the OpenAl company in any way.
This is just a collection of information shared by Reddit users, compiled by fremenmuaddib.

Wl You can download the latest version of this free guide from: Cheatography.

Last updated: 2023-06-30T05:17:38Z

Version: 1.10.6

https://github.com/keenua/gpt-commands-python
https://github.com/RustleofCicada/gptparse
https://github.com/RockChinQ/CallingGPT
https://github.com/jupyterjazz/git-agent
https://github.com/DennisKo/open-ai-gpt-function-demo
https://github.com/Significant-Gravitas/Auto-GPT
https://godmode.space/
https://openaimaster.com/how-does-autogpt-work-an-ai-tool-to-create-full-projects/
https://agentgpt.reworkd.ai/
https://autogpt.thesamur.ai/
https://openai.com/blog/chatgpt-plugins
https://gptstore.ai/
https://www.getit.ai/gpt-plugins
https://github.com/ruvnet/chatgpt_plugin_python
https://github.com/ruvnet/Surfer
https://www.security.dev/
https://github.com/SamurAIGPT/ChatGPT-Developer-Plugins
https://allthingsai.com/chatgpt-plugins
https://github.com/feedox/alt-gpt
https://huggingface.co/spaces/fffiloni/LangChain-ChatGPT-plugins
https://gpt4all.io/index.html
https://github.com/nomic-ai/gpt4all
https://github.com/nomic-ai/gpt4all-ui
https://github.com/nomic-ai/gpt4all-chat
https://github.com/zetavg/LLaMA-LoRA-Tuner
https://www.prompt-talent.com/
https://www.reddit.com/user/fremenmuaddib
https://cheatography.com/fmuaddib/cheat-sheets/openai-chatgpt-beginners-vademecum/

