Linear Algebra - MATH 232 Cheat Sheet by fionaw via cheatography.com/124375/cs/23750/

Basic Equations

Network Flows

- 1. the flow in an arc is only in one directions
- 2. flow into a node = flow out of a node
- 3. flow into the network = flow out of the network

Balancing Chemical Equations

 add x's before 	e each	combo	and	both	side
------------------------------------	--------	-------	-----	------	------

2.	carbo	=	х1	+	2(x3),	set	as	system,	solve
----	-------	---	----	---	--------	-----	----	---------	-------

N	/la	at	ri)	(

augmented	variables and soluti-
matrix	on(rhs)
coefficient	coefficients only, no rhs
matrix	

Vectors, Norm, Dot Product

maginitude (norm) of vector	$v \text{ is } v ; v \ge 0$
if k>0, kv same direction as v	magnitude = k v
if k<0, kv opposite direction to v	magnitude = k v
vectors in R ⁿ (n = dimension)	v = (v1, v2,, vn)
v = P1P2 = OP2 - OP1	displacement vector
norm/magnitude of vector	sqrt((v1) ² + (v2) ²)
v = 0 iff v =0	kv = k v
unit vector u in same direct as v	u = (1/ v) v
e1 = (1,0) en = (0,1) in R ⁿ	standard unit vector
$d(u,v) = sqrt((u1-v1)^2 + (u2-v1)^2)$	v2) ² (un-vn) ²)

= ||u-v||

d(u,v) = 0 iff u = v

By fionaw

cheatography.com/fionaw/

Vectors, Norm, Dot Product (cont)

$\begin{aligned} \ \mathbf{u}\ \ \mathbf{v}\ \cos(\theta) \\ \text{u and v are orthogonal if } \mathbf{u} \cdot \mathbf{v} &= 0 \ (\cos(\theta) &= 0) \\ \text{a set of vectors is an orthogonal set iff vivi} \\ &= 0, \text{if } i \neq j \end{aligned}$ $a \text{ set of vectors is an orthonormal set iff vivi} \\ &= 0, \text{if } i \neq j \end{aligned}$ $a \text{ set of vectors is an orthonormal set iff vivi} \\ &= 0, \text{if } i \neq j \end{aligned}$ $a \text{ set of vectors is an orthonormal set iff vivi} \\ &= 0, \text{if } i \neq j \end{aligned}$ $a \text{ set of vectors is an orthonormal set iff vivi} \\ &= 0, \text{if } i \neq j \end{aligned}$ $a \text{ set of vectors is an orthonormal set iff vivi} \\ &= 0, \text{if } i \neq j \end{aligned}$ $a \text{ set of vectors is an orthonormal set iff vivi} \\ &= 0, \text{if } i \neq j \end{aligned}$ $a \text{ set of vectors is an orthonormal set iff vivi} \\ &= 0, \text{if } i \neq j \end{aligned}$ $a \text{ set of vectors is an orthonormal set iff vivi} \\ a \text{ set of vectors is an orthonormal set iff vivi} \\ a \text{ set of vectors is an orthonormal set iff vivi} \\ a \text{ set of vectors is an orthonormal set iff vivi} \\ a \text{ set of vectors is an orthonormal set iff vivi} \\ a \text{ set of vectors is an orthonormal set iff vivi} \\ a \text{ set of vectors is an orthonormal set iff vivi} \\ a \text{ set of vectors is an orthonormal set iff vivi} \\ a \text{ set of vectors is an orthonormal set iff vivi} \\ a \text{ set of vectors is an orthonormal set iff vivi} \\ a \text{ set of vectors is an orthonormal set iff vivi} \\ a \text{ set of vectors is an orthonormal set iff vivi} \\ a set of vectors is an orthonormal set iff vivi \\ a \text{ set of vectors is an orthonormal set iff vivi \\ a \text{ set of vectors is an orthonormal set iff vivi \\ a \text{ set of vectors is an orthonormal set iff vivi \\ a \text{ set of vectors is an orthonormal set iff vivi \\ a \text{ set of vectors is an orthonormal set iff vivi \\ a \text{ set of vectors is an orthonormal set iff vivi \\ a \text{ set of up of vectors is an orthonormal set iff vivi \\ a \text{ set of up of vectors is an orthonormal set iff vivi \\ a \text{ set of up of vectors is an orthonormal set iff vivi \\ a \text{ set of up of vectors is an orthonormal set iff vivi \\ a \text{ set of up of vectors is an orthonormal set iff vivi \\ a \text{ set of up of vectors is a$	u·v = u1v1 + u2v2 +unvn	dot product
u and v are orthogonal if $u \cdot v = 0$ ($\cos(\theta) = 0$) a set of vectors is an orthogonal set iff vi·vj = 0, if i≠j a set of vectors is an orthonormal set iff vi·vj = 0, if i≠j, and vi = 1 for all i $(u \cdot v)^2 \le u ^2 v ^2$ or Cauchy-Schwarz $ u \cdot v \le u v $ Inequality d(uv) $\le d(u,w) +$ Triangle Inequality d(w,v) $ u+v \le u + v $ v1 + v2 + vk = v1 + v2 + vk	u v cos(θ)	
a set of vectors is an orthogonal set iff vi·vj = 0, if i + j a set of vectors is an orthonormal set iff vi·vj = 0, if i + j, and $ v = 1$ for all i $(u \cdot v)^2 \le u ^2 v ^2$ or Cauchy-Schwarz $ u \cdot v \le u v $ Inequality d(uv) \le d(u,w) + Triangle Inequality d(uv,v) $ u + v \le u + v $ v1 + v2 + vk = v1 + v2 + vk	u and v are orthogonal	$if u \cdot v = 0 (\cos(\theta) = 0)$
a set of vectors is an orthonormal set iff vi·vj = 0, if i \neq j, and vi = 1 for all i (u·v) ² \leq u ² v ² or Cauchy-Schwarz u·v \leq u v Inequality d(uv) \leq d(u,w) + Triangle Inequality d(w,v) u+v \leq u + v v1 + v2 + vk = v1 + v2 + vk	a set of vectors is an c = 0,if i≠j	rthogonal set iff vi∙vj
= 0, if i+j, and $ vi = 1$ for all i $(u \cdot v)^2 \le u ^2 v ^2$ or Cauchy-Schwarz $ u \cdot v \le u v $ Inequality $d(uv) \le d(u,w) +$ Triangle Inequality $d(w,v)$ u+v \le u + v $ u+v \le u + v $ v1 + v2 + vk = v1 + v2 + vk	a set of vectors is an c	rthonormal set iff vi·vj
$(u \cdot v)^2 \le u ^2 v ^2$ or Cauchy-Schwarz $ u \cdot v \le u v $ Inequality $d(uv) \le d(u,w) +$ Triangle Inequality $d(w,v)$ $ u+v \le u + v $ $ u+v \le u + v $ $ v + v $	= 0,if i≠j, and vi = 1 f	for all i
$\begin{aligned} d(uv) ≤ d(u,w) + & Triangle Inequality \\ d(w,v) \\ u+v ≤ u + v \\ v1 + v2 + vk = v1 + v2 + vk \end{aligned}$	(u·v) ² ≤ u ² v ² or u·v ≤ u v	Cauchy-Schwarz Inequality
v1 + v2 + vk = v1 + v2 + vk	d(uv) ≤ d(u,w) + d(w,v) u+v ≤ u + v	Triangle Inequality
	v1 + v2 + vk = v	1 + v2 + vk

Lines and Planes	
a vector equation with parameter t	x = x0 + tv, $-\infty < t < +\infty$
solutin set for 3 dimension lin a plane	ear equation is
if x is a point on this plane (point-normal equation)	n·(x-x0) = 0
A(x-x0)+B(y-y0)+C(z-z0) = 0	x0 = (x0,y0,z0), n = (A, B, C)
general/algebraic equation	Ax+By+Cz =
	D

(A + B)ij = (A)ij + (B)ij	(A - B)ij = (A)ij - (B)ij
(cA)ij = c(A)ij	(A ^T)ij = (A)ji
(AB)ij = ai1b1j + ai2b2j	+ aikbkj
Inner Product (number) same size	is u ^T v = u·v, u an
Outer Product (matrix) i be any size	s uv^T , u and v can
$(A^T)^T = A$	$(kA)^{T} = k(A)^{T}$
$(A+B)^{T} = A^{T} + B^{T}$	$(AB)^{T} = B^{T}A^{T}$
$tr(A^{T}) = tr(A)$	tr(AB) = tr(BA)
$u^{T}v = tr(uv^{T})$	$tr(uv^{T}) = tr(vu^{T})$
tr(A) = a11 + a22 + ann	(A ^T)ij = Aji
Identity matrix is square diagonals	e matrix with 1 alor
lf A is m x n, A⊡n = A a	and □mA = A
a square matrix is invertible(nonsingular) if:	AB = □ = BA
B is the inverse of A	$B = A^{-1}$
if A has no inverse, A is (singular)	not invertible
$det(A) = ad - bc \neq 0$ is in	vertible
if A is invertible:	$(AB)^{-1} = B^{-1}A^{-1}$
$(A^n)^{-1} = A^{-n} = (A^{-1})^n$	$(A^{T})^{-1} = (A^{-1})^{T}$
(kA) ⁻¹	1/k(A ⁻¹), k≠0

elementary matrices are invertible $A^{-1} = Ek Ek-1 \dots E2 E1$ [A | \Box] -> [\Box | A^{-1}] (how to find inverse of A) Ax = b; x = $A^{-1}b$

Sponsored by Readable.com Measure your website readability! https://readable.com

Published 16th July, 2020. Last updated 10th August, 2020. Page 1 of 4.

Linear Algebra - MATH 232 Cheat Sheet by fionaw via cheatography.com/124375/cs/23750/

Elementary Matrix and Unifying Theorem (cont)

- A -> RREF = 🗆

- A can be express as a product of E

- A is invertible
- Ax = 0 has only the trivial solution

- Ax = b is consistent for every vector b in Rⁿ

- Ax = b has eactly 1 solution for every b in Rⁿ

- colum and rowvectors of A are linealy independent

- det(A) ≠ 0

- λ = 0 is not an eigenvalue of A

- TA is one to one and onto

If not, then all no.

Consistency

EAx = Eb -> Rx = b', where b' = Eb

(Ax=b) [A | b] -> [EA | Eb] (Rx = b') (but treat b as unknown: b1, b2...)

For it to be consistent, if R has zero rows at the bottom, b' that row must equal to zero

Homogeneous Systems

Linear Combination of the v $v = c1v1 + c2v2 \dots + cnvn$ (use matrix to find c)	ectors:
Ax = 0	Homogeneous
Ax = b	Non-homog- enous
x = x0 + t1v1 + t2v2 + tkvk	Homogeneous
x = t1v1 + t2v2 + tkvk	Non-homog- eneous
xp is any solution of NH system and xh is a solution of H	x = xp + xh
system	

By fionaw

cheatography.com/fionaw/

Examples of Subspace

IF: w1, w2 are	then w1+w2 are
within S	within S
	and kw1 is within S
- the zero vector 0 it	self is a subspace
- R ⁿ is a subspace of	f all vectors
- Lines and planes th	rough the origin are

subspaces

- The set of all vectors b such that Ax = b is consistent, is a subspace

- If {v1, v2, ...vk} is any set of vectors in Rⁿ, then the set W of all linear combinations of these vector is a subspace

 $W = \{c1v1 + c2v2 + ... ckvk\}; c are within$ real numbers

Span

- the span of a set of vectors { v1, v2, ... vk} is the set of all linear combinations of these vectors

span { v1, v2, ... vk} = { v11t, t2v2, ... , tkvk} If $S = \{v1, v2, \dots vk\}$, then W = span(S) is a subspace

Ax = b is consistent if and only if b is a linear combination of col(A)

Linear Independent

- if unique solution for a set of vectors, then it is linearly independent
c1v1 + c2v2 + cnvn = 0; all the c = 0
- for dependent, not all the $c = 0$
Dependent if:
- a linear combination of the other vectors
- a scalar multiple of the other
- a set of more than n vectors in R ⁿ
Independent if:
- the span of these two vectors form a plane

Published 16th July, 2020. Last updated 10th August, 2020. Page 2 of 4.

Linear Independent (cont)

- list the vectors as the columns of a matrix, row reduce it, if many solution, then it is dependent

- after RREF, the columns with leading 1's are a maxmially linearly independent subset according to Pivot Theorem

Diagonal, Triangula	ar, Symmetric Matrices
Diagonal Matrices	all zeros along the diagonal
Lower Triangular	zeros above diagonal
Upper Triangular	zeros below the diagonal
Symmetric if:	$A^{T} = A$
Skew-Symm- etric if:	$A^{T} = -A$

Determinants

det(A) = a1jC1j + a2jC2j + anjCnj	expansion along jth column	
det(A) = ai1Ci1 + ai2Ci2 + ainCin	expansion along the ith row	
Cij = (-1) ^{i+j} Mij		
Mij = deleted ith row and	jth column matrix	
- pick the one with most a easier	zeros to calculate	
$\det(A^{T}) = \det(A)$	det(A ⁻¹) = 1/det(A)	
det(AB) = det(A)det(B)	$det(kA) = k^n det(A)$	
- A is invertible iff det(A) not equal 0		
- det of triangular or diagonal matrix is the product of the diagonal entries		
det(A) for 2x2 matrix	ad - bc	

Sponsored by Readable.com Measure your website readability! https://readable.com

Linear Algebra - MATH 232 Cheat Sheet	
by fionaw via cheatography.com/124375/cs/23750	/

Adjoint and Cramer's Rule		
$adj(A) = C^T$	C ^T = matrix confactor of A	
$A^{-1} = (1/\det(A))$ adj(A)	adj(A)A = det(A) I	
x1 = det(A1) / det(A)	x2 = det(A2) / det(A)	
xn = det(An) / det(A)	det(A) not equal 0	
An is the matrix when the nth column is		

replaced by b

 	nlon.	~ ^		Λ / α	lu una c
		2 . А	i i era i	A74 0.	
self-selfed	and in the second second second				

a hyperplane in R ⁿ	a1x1 + a2x2 + anxn = b		
- can also written as ax = b			
to find a ^{perp}	ax = 0, find the span		
if A is 2x2 matrix: - det(A) is the area of parallelogram			
if A is 3x3 matrix: - det(A) is the volume of parallelepiped			
- subtract points to get three vectors, then make it to a matrix to find the area/volume			

Cross Product

u x v = (u2v3 - u2v1)	u3v2, u3v1 - u1v3, u1v2 -	
u x v = -v x u	$k(u \ge v) = (ku) \ge v = u \ge (kv)$	
u x u = 0	parallel vectors has 0 for c.p.	
u (u x v) = 0	v (u x v) = 0	
u x v is perpendicular to span {u, v}		
$ u \times v = u $	vII sin(theta) where theta is	

 $||\mathbf{u} \times \mathbf{v}|| = ||\mathbf{u}|| ||\mathbf{v}|| \sin(\text{theta})$, where theta is the angle between vectors

Complex Number	
complex number	a + ib
(a + ib) + (c + id) = (a + c) +	i(b + d)
(a + ib) - (c + id) = (a - c) + i(a - c) +	b - d)
(a + ib) (c + id) = (ac + bd) +	i(ad + bc)
$(a + bx) (c + dx) = (ac + bdx^{2})$ $i^{2} = -1$) + x(ad + bc)
z = a + ib	z bar = a - ib
the length(magnitude) of vector z	z = sqrt(z x z bar) = sqrt(a² + b²)
$z^{-1} = 1/z = z \text{ bar } / z ^2$	
$z1/z2 = z1z2^{-1}$	
$z = z (\cos(\theta) + i (\sin(\theta))$	polar form (r = z)
z1z2 = z1 z2 (cos(θ1 + θ2 θ2))) + i (sin(θ1 +
z1/z2 = z1 / z2 (cos(θ1 - θ θ2))	2) + i (sin(θ1 -
$z^{n} = r^{n}(\cos(n \theta) + i \sin(n \theta))$	r = z
$e^{i \text{ theta}} = \cos(\theta) + i \sin(\theta)$	
e ^{i pi} = -1	$e^{i p i} + 1 = 0$
$z1z2 = r1r2 e^{i (\theta 1 + \theta 2)}$	$z^n = r^n e^{i n \theta}$
z1 /z2 = r1 / r2 $e^{i(\theta 1 - \theta 2)}$	

Eigenvalues and Eigenvectors

 $Ax = \lambda x$

 $det(\lambda I - A) = (-1)^{n} det(A - \lambda I)$ $pa(\lambda) = 3x3: det(A - \lambda I); 2x2: det(\lambda I - A)$ $- solve for (\lambda I - A)x = 0 for eigenvectors$ Work Flow:

- form matrix
- compute $pa(\lambda) = det(\lambda I A)$
- find roots of pa(λ) -> eigenvalues of A
- plug in roots then solve for the equation

Linear Transformation

f: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, n = domain, m = co-domain f(x1, x2, ...xn) = (y1, ...ym)T: Rⁿ -> R^m is a linear transformatin if 1. T(cu) = cT(u)2. T(u + v) = T(u) + T(v)for any linear transformation, T(0) = 0 $R\theta = [T(e1) T(e2)] = [cos\theta]$ matrix for -sinθ] rotation [sinθ cosθ] reflection across y-axis: T(x, y) = (-x, y)reflection across x-axis: T(x, y) = (y, -x)reflection across diagonal y = x, T(x, y) = (y, y)X) orthogonal projection onto the x-axis: T(x, y)= (x, 0)orthogonal projection onto the y-axis: T(x, y) = (0, y)u = (1/||v||)v; express it vertically as u1 and u2 $A = [(u1)^2 u2u1]$ projection $[u1u2 (u2)^2]$ matrix contraction with $0 \le k < 1$ (shrink), k > 1(stretch) [x, y] -> [kx, ky] compression in x-direction [x, y] -> [kx, y] compression in y-direction [x, y] -> [x, ky] shear in x-direction T(x,y) = (x+ky, y);[x+ky (1, k), y(0, 1)] shear in y-direction T(x,y) = (x, y+kx);[x (1, 0), y (k, 1)] orthogonal projection on the xy-plane: [x, y, 0] orthogonal projection on the xz-plane: [x, 0, Z] orthogonal projection on the yz-plane: [0, y, Z] reflection about the xy-plane: [x, y, -z] reflection about the xz-plane: [x, -y, z] reflection about the yz-plane: [-x, y, z]

Sponsored by Readable.com Measure your website readability! https://readable.com

```
C
```

By fionaw cheatography.com/fionaw/

Published 16th July, 2020. Last updated 10th August, 2020. Page 3 of 4.

Linear Algebra - MATH 232 Cheat Sheet by fionaw via cheatography.com/124375/cs/23750/

Orthogonal Transformation

an orthogonal transformation is a linear transformation T; $R^n \rightarrow R^n$ that preserves lengths; ||T(u)|| = ||u||

 $||T(u)|| = ||u|| \le T(x) \cdot T(y) = x \cdot y$ for all x,y in Rⁿ

orthogonal matrix is square matrix A such that $A^T = A^{-1}$

1. if A is orthogonal, then so is A^{T} and A^{-1}

2. a product of orthonal matrices is orthogonal

3. if A is orthogonal, then det(A) = 1 or -1

4. if A is orthogonal, then rows and columns of A are each orthonormal sets of vectors

Kernel, Range, Composition

ker(T) is the set of all vectors x such that T(x) = 0, RREF matrix, find the vector, ker(T) = span{(v)}

the solution space of Ax = 0 is the null space;

null(A) = ker(A)

range of T, ran(T) is the set of vectors y such that

y = T(x) for some x

ran(T) = col([T]) = span{ [col1], [col2] ...}; Ax = b

Important Facts:

1. T is one to one iff $ker(T) = \{0\}$ 2. Ax = b, if consistent, has a unique solution iff null(A) = $\{0\}$; Ax = 0 has only the trivial solution iff $null(A) = \{0\}$ Important facts 2:

1.T: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is onto iff the system Tx = y has a solution x in Rⁿ for every y in R^m 2. Ax = b is consistent for every b in R^m(A is onto) iff $col(A) = R^{m}$

The composition of T2 with T1 is: T2 ° T1

$$(T2 \circ T1)(x) = T2(T1(x)); T2 \circ T1: R^{n} \rightarrow R^{n}$$

compostion of linear transformations corresponds to matrix application: [T2 • T1] = [T1] [T2]

By fionaw cheatography.com/fionaw/

Kernel, Range, Composition (cont)

 $[\mathsf{T}(\theta 1 + \theta 2)] = [\mathsf{T}\theta 2] \circ [\mathsf{T}\theta 1];$ rotate then shear ≠ shear then rotate linear trans T: Rⁿ->R^m has an inverse iff T is one to one, T^{-1} : $R^{m} \rightarrow R^{n}$, $Tx = y \iff x =$ $T^{-1}v$ for Rn to Rn, $[T^{-1}] = [T]^{-1}$; $[T]^{-1} \circ T = 1n <=>$ [T⁻¹][T]=□n 1n is identity transformation; □n is identity matrix Basis, Dimension, Rank S is a basis for the subspace V of Rⁿ if: S is linearly idenpendent and span(S) = V dim(V) = k, k is the # of vectors row(A) = rows with leading ones after RREF col(A) = columns with leading ones from original A null(A) = free variable's vectors $null(A^{T})$ = after transform, the free variable vector The Rank Theorem: $rank(A) = rank(A^{T})$ for any matrix have the same dimension rank(A) = # of free vectors in span $\dim(row(A)) = \dim(col(A)) = rank(A)$ dim(null(A)) = nullity(A)Orthogonal Compliment, DImention Theorem

$\begin{split} S^{\perp} &= \{ v \in R^{n} \mid v \cdot w = 0 \text{ for all } w \in S \} \\ S^{\perp} \text{ is a subspace of } R^{n}; S^{\perp} &= \text{span}(S)^{\perp} &= W^{\perp} \\ \text{row}(A)^{\perp} &= \text{null}(A) \\ & \begin{array}{c} null(A)^{\perp} &= row(A) \\ ((S^{\perp})^{\perp} &= S \text{ iff } S \text{ is } \\ subspace \end{array} \\ \hline \text{col}(A)^{\perp} &= \text{null}(A^{T}) \\ \text{col}(A)^{\perp} &= \text{null}(A^{T}) \\ \text{The Dimension} \\ \text{The Orem} \\ \text{A is } m \times n \text{ matrix} \\ \text{A is } m \times n \text{ matrix} \\ \text{if } W \text{ is a subspace} \\ \text{of } R^{n} \\ \text{n} \\ \end{split}$		
S^{\perp} is a subspace of R^n ; $S^{\perp} = span(S)^{\perp} = W^{\perp}$ $row(A)^{\perp} = null(A)$ $null(A)^{\perp} = row(A)$ $((S^{\perp})^{\perp} = S iff S is$ subspace $col(A)^{\perp} = null(A^T)$ $null(A^T)^{\perp} = col(A)$ $row(A)^{\perp} = null(A^T)$	$S^{\perp} = \{ v \in R^n \mid v \cdot w = 0 \}$) for all $w \in S$
$\operatorname{row}(A)^{\perp} = \operatorname{null}(A)$ $\operatorname{null}(A)^{\perp} = \operatorname{row}(A)$ $((S^{\perp})^{\perp} = S \operatorname{iff} S \operatorname{is}$ subspace $\operatorname{col}(A)^{\perp} = \operatorname{null}(A^{T})$ $\operatorname{null}(A^{T})^{\perp} = \operatorname{col}(A)$ The Dimension $\operatorname{rank}(A) + \operatorname{nullity}(A) =$ TheoremTheorem n A is m x n matrix $(k + (n-k) = n)$ if W is a subspace $\dim(W) + \dim(W^{\perp}) =$ n	$S^{\!\perp}\!$ is a subspace of R	n; $S^{\perp} = \operatorname{span}(S)^{\perp} = W^{\perp}$
$col(A)^{\perp} = null(A^T)$ $null(A^T)^{\perp} = col(A)$ The Dimension $rank(A) + nullity(A) =$ TheoremnA is m x n matrix $(k + (n-k) = n)$ if W is a subspace $dim(W) + dim(W^{\perp}) =$ of R^n n	$row(A)^{\perp} = null(A)$	null(A) ^{\perp} = row(A) ((S ^{\perp}) ^{\perp} = S iff S is subspace
The Dimensionrank(A) + nullity(A) =TheoremnA is m x n matrix $(k + (n-k) = n)$ if W is a subspacedim(W) + dim(W [⊥]) =of R ⁿ n	$col(A)^{\perp} = null(A^{T})$	$null(A^T)^{\perp} = col(A)$
TheoremnA is m x n matrix $(k + (n-k) = n)$ if W is a subspace $dim(W) + dim(W^{\perp}) =$ of R^n n	The Dimension	rank(A) + nullity(A) =
A is m x n matrix $(k + (n-k) = n)$ if W is a subspace $\dim(W) + \dim(W^{\perp}) =$ of \mathbb{R}^n n	Theorem	n
$\begin{array}{ll} \mbox{if W is a subspace} & \mbox{dim}(W) + \mbox{dim}(W^{\bot}) = \\ \mbox{of R^n} & \mbox{n} \end{array}$	A is m x n matrix	(k + (n-k) = n)
	if W is a subspace of R ⁿ	$\dim(W) + \dim(W^{\perp}) =$ n

Published 16th July, 2020. Last updated 10th August, 2020. Page 4 of 4.

Sponsored by Readable.com Measure your website readability! https://readable.com