Basic Equations

Network Flows

1. the flow in an arc is only in one directions
2. flow into a node = flow out of a node
3. flow into the network = flow out of the network

Balancing Chemical Equations

1. add x 's before each combo and both side
2. carbo $=x 1+2(x 3)$, set as system, solve

Matrix

augmented matrix	variables and soluti- on(rhs)
coefficient matrix	coefficients only, no rhs

Vectors, Norm, Dot Product

maginitude (norm) of vector v is $\|v\| ;\|v\| \geq 0$
if $k>0$, $k v$ same direction magnitude $=$ as v
if $k<0$, kv opposite direction to v
vectors in R^{n} ($n=$ dimension)
$v=\mathrm{P} 1 \mathrm{P} 2=\mathrm{OP} 2-\mathrm{OP} 1$
norm/magnitude of vector ||v||
$\|v\|=0$ iff $v=0$
unit vector u in same
direct as v
e1 $=(1,0 \ldots) \ldots$ en $=\quad$ standard unit
$(0, \ldots 1)$ in $R^{n} \quad$ vector
$d(u, v)=\operatorname{sqrt}\left((u 1-v 1)^{2}+(u 2-v 2)^{2} \ldots(u n-v n)^{2}\right)$
$=\|u-v\|$
$d(u, v)=0$ iff $u=v$

Vectors, Norm, Dot Product (cont)

$u \cdot v=u 1 v 1+u 2 v 2$ dot product
...+unvn
$\|\mathrm{u}\|\|\mathrm{lv}\| \cos (\theta)$
u and v are orthogonal if $u \cdot v=0(\cos (\theta)=0)$
a set of vectors is an orthogonal set iff vivj $=0$, if i i \ddagger
a set of vectors is an orthonormal set iff vi.vj
$=0$,if $i \neq j$, and $\|v i\|=1$ for all i
$(u \cdot v)^{2} \leq\|u\|^{2}\|v\|^{2}$ or Cauchy-Schwarz
$|u \cdot v| \leq\|u\|\| \| v \| \quad$ Inequality
$\mathrm{d}(\mathrm{uv}) \leq \mathrm{d}(\mathrm{u}, \mathrm{w})+\quad$ Triangle Inequality
$d(w, v)$
$\|u+v\| \leq\|u\|+\|v\|$
$\|v 1+\mathrm{v} 2 \ldots+\mathrm{vk}\|=\|\mathrm{v} 1\|+\|\mathrm{v} 2\| . . .+\mid \mathrm{vk} \|$

Lines and Planes	
a vector equation with parameter t	$\begin{aligned} & \mathrm{x}=\mathrm{x} 0+\mathrm{tv}, \\ & -\infty<\mathrm{t}<+\infty \end{aligned}$
solutin set for 3 dimension linear equation is a plane	
if x is a point on this plane (point-normal equation)	$n \cdot(x-x 0)=0$
$\begin{aligned} & A(x-x 0)+B(y-y 0)+C(z-z 0)= \\ & 0 \end{aligned}$	$\begin{aligned} & x 0= \\ & (x 0, y 0, z 0), \\ & \mathrm{n}=(\mathrm{A}, \mathrm{~B}, \mathrm{C}) \end{aligned}$
general/algebraic equation	$A x+B y+C z=$ D

two planes are parallel if $\mathbf{n 1}=\mathbf{k n} \mathbf{2}$,
orthogonal if $\mathrm{n} 1 \cdot \mathrm{n} 2=0$

Published 16th July, 2020.
Last updated 10th August, 2020.
Page 1 of 4 .

Matrix Algebra, Identity and Inverse Matrix
$(A+B) i j=(A) i j+(B) i j \quad(A-B) i j=(A) i j-$
(B) ij
$(c A) i j=c(A) i j$
$\left(A^{\top}\right) \mathrm{ij}=(A) j i$
$(A B) i j=a i 1 b 1 j+a i 2 b 2 j+\ldots$ aikbkj
Inner Product (number) is $\mathbf{u}^{\mathbf{T}} \mathbf{v}=\mathbf{u} \cdot \mathbf{v}, \mathrm{u}$ and v same size

Outer Product (matrix) is $u v^{\top}, u$ and v can be any size
$\left(A^{T}\right)^{T}=A$
$(k A)^{\top}=k(A)^{\top}$
$(A+B)^{\top}=A^{\top}+B^{\top}$
$(A B)^{\top}=B^{\top} A^{\top}$
$\operatorname{tr}\left(\mathrm{A}^{\top}\right)=\operatorname{tr}(\mathrm{A})$
$\operatorname{tr}(\mathrm{AB})=\operatorname{tr}(\mathrm{BA})$
$u^{\top} v=\operatorname{tr}\left(u v^{\top}\right)$
$\operatorname{tr}\left(u v^{\top}\right)=\operatorname{tr}\left(v u^{\top}\right)$
$\operatorname{tr}(\mathrm{A})=\mathrm{a} 11+\mathrm{a} 22 \ldots+$
$\left(A^{\top}\right) i j=A j i$
ann

Identity matrix is square matrix with 1 along diagonals

If A is $\mathrm{mxn}, \mathrm{A} \square \mathrm{n}=\mathrm{A}$ and $\square \mathrm{mA}=\mathrm{A}$
a square matrix is $\quad \mathrm{AB}=\square=\mathrm{BA}$
invertible(nonsingular)
if:
B is the inverse of $A \quad B=A^{-1}$
if A has no inverse, A is not invertible (singular)
$\operatorname{det}(A)=a d-b c \neq 0$ is invertible

if A is invertible:	$(A B)^{-1}=B^{-1} A^{-1}$
$\left(A^{n}\right)^{-1}=A^{-n}=\left(A^{-1}\right)^{n}$	$\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}$
$(k A)^{-1}$	$1 / k\left(A^{-1}\right), k \neq 0$

Elementary Matrix and Unifying Theorem
elementary matrices are invertible
$\mathrm{A}^{-1}=\mathrm{Ek}$ Ek-1 ... E2 E1
[A|D]->[D|A ${ }^{-1}$]
(how to find inverse of A)
$A x=b ; x=A^{-1} b$

Sponsored by Readable.com

Measure your website readability!
https://readable.com

Elementary Matrix and Unifying Theorem (cont)

- A -> RREF = \square
- A can be express as a product of E
- A is invertible
- $\mathrm{Ax}=0$ has only the trivial solution
- $\mathrm{Ax}=\mathrm{b}$ is consistent for every vector b in R^{n}
- $A x=b$ has eactly 1 solution for every b in R^{n}
- colum and rowvectors of A are linealy independent
$-\operatorname{det}(A) \neq 0$
$-\lambda=0$ is not an eigenvalue of A
- TA is one to one and onto

If not, then all no.

Consistency

$\mathrm{EAx}=\mathrm{Eb}->\mathrm{Rx}=\mathrm{b}^{\prime}$, where $\mathrm{b}^{\prime}=\mathrm{Eb}$
(Ax=b) [A|b]->[EA|Eb](Rx=b')
(but treat b as unknown: b1, b2...)
For it to be consistent, if R has zero rows at the bottom, b^{\prime} that row must equal to zero

Homogeneous Systems

Linear Combination of the vectors:
$\mathrm{v}=\mathrm{c} 1 \mathrm{v} 1+\mathrm{c} 2 \mathrm{v} 2 \ldots+\mathrm{cnvn}$
(use matrix to find c)

$A x=0$	Homogeneous
$\mathrm{Ax}=\mathrm{b}$	Non-homogenous
$x=x 0+t 1 v 1+t 2 v 2 \ldots+$ tkvk	Homogeneous
$x=t 1 v 1+t 2 v 2 \ldots+t k v k$	Non-homogeneous
xp is any solution of NH system and xh is a solution of H system	$x=x p+x h$

By fionaw
cheatography.com/fionaw/

Examples of Subspaces

IF: w1, w2 are then $\mathrm{w} 1+\mathrm{w} 2$ are within S within S and kw1 is within S

- the zero vector 0 it self is a subspace
$-R^{n}$ is a subspace of all vectors
- Lines and planes through the origin are subspaces
- The set of all vectors b such that $A x=b$ is consistent, is a subspace
- If $\{v 1, v 2, \ldots v k\}$ is any set of vectors in R^{n}, then the set W of all linear combinations of these vector is a subspace
$W=\{c 1 v 1+c 2 v 2+\ldots c k v k\} ; c$ are within real numbers

Span

- the span of a set of vectors $\{\mathrm{v} 1, \mathrm{v} 2, \ldots \mathrm{vk}\}$ is the set of all linear combinations of these vectors
span $\{\mathrm{v} 1, \mathrm{v} 2, \ldots \mathrm{vk}\}=\{\mathrm{v} 11 \mathrm{t}, \mathrm{t} 2 \mathrm{v} 2, \ldots, \mathrm{tkvk}\}$
If $S=\{v 1, v 2, \ldots v k\}$, then $W=\operatorname{span}(S)$ is a subspace
$A x=b$ is consistent if and only if b is a linear combination of col(A)

Linear Independent

- if unique solution for a set of vectors, then it is linearly independent
$\mathrm{c} 1 \mathrm{v} 1+\mathrm{c} 2 \mathrm{v} 2 \ldots+\mathrm{cnvn}=0$; all the $\mathrm{c}=0$
- for dependent, not all the $\mathrm{c}=0$

Dependent if:

- a linear combination of the other vectors
- a scalar multiple of the other
- a set of more than n vectors in R^{n}

Independent if:

- the span of these two vectors form a plane

Published 16th July, 2020.
Last updated 10th August, 2020.
Page 2 of 4.

Linear Independent (cont)

- list the vectors as the columns of a matrix, row reduce it, if many solution, then it is dependent
- after RREF, the columns with leading 1's are a maxmially linearly independent subset according to Pivot Theorem

Diagonal, Triangular, Symmetric Matrices	
Diagonal	all zeros along the
Matrices	diagonal
Lower	zeros above diagonal
Triangular	
Upper zeros below the Triangular diagonal Symmetric if: $\mathbf{A}^{\top}=\mathbf{A}$ Skew-Symm- etric if: $\mathbf{A}^{\mathbf{T}}=-\mathbf{A}$	

Determinants	
$\begin{aligned} & \operatorname{det}(A)=a 1 j C 1 j+ \\ & a 2 j C 2 j \ldots+a n j C n j \end{aligned}$	expansion along jth column
$\begin{aligned} & \operatorname{det}(\mathrm{A})=\operatorname{ai} 1 \mathrm{Ci} 1+ \\ & \operatorname{ai} 2 \mathrm{Ci} 2 \ldots+\text { ainCin } \end{aligned}$	expansion along the ith row
$\mathrm{Cij}=(-1)^{\mathrm{i}+\mathrm{j}} \mathrm{Mij}$	
$\mathrm{Mij}=$ deleted ith row and jth column matrix	
- pick the one with most zeros to calculate easier	
$\operatorname{det}\left(A^{\top}\right)=\operatorname{det}(A)$	$\begin{aligned} & \operatorname{det}\left(A^{-1}\right)= \\ & 1 / \operatorname{det}(A) \end{aligned}$
$\operatorname{det}(\mathrm{AB})=\operatorname{det}(\mathrm{A}) \operatorname{det}(\mathrm{B})$	$\operatorname{det}(k A)=k^{n} \operatorname{det}(A)$
- A is invertible iff $\operatorname{det}(\mathrm{A})$ not equal 0	
- det of triangular or diagonal matrix is the product of the diagonal entries	
$\operatorname{det}(\mathrm{A})$ for 2×2 matrix	ad-bc

Sponsored by Readable.com

Measure your website readability!
https://readable.com

Adjoint and Cramer's Rule	
$\operatorname{adj}(\mathrm{A})=\mathrm{C}^{\top}$	$C^{\top}=$ matrix confactor of A
$\begin{aligned} & \mathrm{A}^{-1}=(1 / \operatorname{det}(\mathrm{A})) \\ & \operatorname{adj}(\mathrm{A}) \end{aligned}$	$\operatorname{adj}(A) A=\operatorname{det}(A) I$
$\begin{aligned} & \mathrm{x} 1=\operatorname{det}(\mathrm{A} 1) / \\ & \operatorname{det}(\mathrm{A}) \end{aligned}$	$\mathrm{x} 2=\operatorname{det}(\mathrm{A} 2) / \operatorname{det}(\mathrm{A})$
$\begin{aligned} & \mathrm{xn}=\operatorname{det}(\mathrm{An}) / \\ & \operatorname{det}(\mathrm{A}) \end{aligned}$	$\operatorname{det}(\mathrm{A})$ not equal 0
An is the matrix when the nth column is replaced by b	

Hyperplane, Area/Volume
a hyperplane in $\quad \mathbf{a} 1 \times 1+a 2 \times 2 \ldots+a n \times n=$ $R^{n} \quad b$

- can also written as $\mathrm{ax}=\mathrm{b}$
to find $\mathrm{a}^{\text {perp }} \quad \mathrm{ax}=0$, find the span
if A is 2×2 matrix:
- |det(A)| is the area of parallelogram
if A is 3×3 matrix:
- $|\operatorname{det}(\mathrm{A})|$ is the volume of parallelepiped
- subtract points to get three vectors, then make it to a matrix to find the area/volume

Cross Product

$u \times v=(u 2 v 3-u 3 v 2, u 3 v 1-u 1 v 3, u 1 v 2-$
u2v1)
$u \times v=-v x \quad k(u \times v)=(k u) x v=u x(k v)$
u
$u \times u=0 \quad$ parallel vectors has 0 for c.p.
$u(u \times v)=0 \quad v(u \times v)=0$
$u x v$ is perpendicular to span $\{u, v\}$
$\|u x v\|=\|u\|\|v\| \sin (t h e t a)$, where theta is the angle between vectors

Complex Number		
complex number	a + ib	
$(\mathrm{a}+\mathrm{ib})+(\mathrm{c}+\mathrm{id})=(\mathrm{a}+\mathrm{c})+\mathrm{i}(\mathrm{b}+\mathrm{d})$		
($\mathrm{a}+\mathrm{ib}$) $-(\mathrm{c}+\mathrm{id})=(\mathrm{a}-\mathrm{c})+\mathrm{i}(\mathrm{b}-\mathrm{d})$		
$(\mathrm{a}+\mathrm{ib})(\mathrm{c}+\mathrm{id})=(\mathrm{ac}+\mathrm{bd})+\mathrm{i}(\mathrm{ad}+\mathrm{bc})$		
$(a+b x)(c+d x)=\left(a c+b d x^{2}\right)+x(a d+b c)$		
$\mathrm{i}^{2}=-1$		
$\mathrm{z}=\mathrm{a}+\mathrm{ib}$	$\mathrm{z} \mathrm{bar}=\mathrm{a}-\mathrm{ib}$	
the length(magnitude) of vector z	$\begin{aligned} & \|z\|=\operatorname{sqrt}(z \times z \\ & \text { bar }) \\ & =\operatorname{sqrt}\left(a^{2}+b^{2}\right) \end{aligned}$	
$z^{-1}=1 / z=z \operatorname{bar} /\|z\|^{2}$		
$z 1 / \mathrm{z2}=\mathrm{z1z2}{ }^{-1}$		
$\mathrm{z}=\|\mathrm{z}\|(\cos (\theta)+\mathrm{i}(\sin (\theta))$	polar form ($r=$ \|z)

$z 1 z 2=|z 1||z 2|(\cos (\theta 1+\theta 2)+i(\sin (\theta 1+$ ө2))
$z 1 / z 2=|z 1| /|z 2|(\cos (\theta 1-\theta 2)+i(\sin (\theta 1-$ ө2))
$z^{n}=r^{n}(\cos (n \theta)+i \sin (n \quad r=|z|$
ө))
$e^{i \text { theta }}=\cos (\theta)+i \sin (\theta)$
$e^{i p i}=-1$

$$
e^{i p i}+1=0
$$

$z 1 z 2=r 1 r 2 e^{i(\theta 1+\theta 2)}$
$z^{n}=r^{n} e^{i n \theta}$
$z 1 / z 2=r 1 / r 2 e^{i(\theta 1-\theta 2)}$

Eigenvalues and Eigenvectors

$A x=\lambda x$
$\operatorname{det}(\lambda l-A)=(-1)^{n} \operatorname{det}(A-\lambda I)$
$\mathrm{pa}(\lambda)=3 \times 3: \operatorname{det}(\mathrm{A}-\lambda) ; 2 \times 2: \operatorname{det}(\lambda 1-A)$

- solve for $(\lambda 1-A) x=0$ for eigenvectors

Work Flow:

- form matrix
- compute pa $(\lambda)=\operatorname{det}(\lambda I-A)$
- find roots of $\mathrm{pa}(\lambda)$-> eigenvalues of A
- plug in roots then solve for the equation

Linear Transformation

f: $\mathrm{R}^{\mathrm{n}}->\mathrm{R}^{\mathrm{m}}, \mathrm{n}=$ domain, $\mathrm{m}=$ co-domain $\mathrm{f}(\mathrm{x} 1, \mathrm{x} 2, \ldots \mathrm{xn})=(\mathrm{y} 1, \ldots \mathrm{ym})$
$T: R^{n}->R^{m}$ is a linear transformatin if

1. $T(c u)=c T(u)$
2. $T(u+v)=T(u)+T(v)$
for any linear transformation, $\mathrm{T}(0)=0$
$R \theta=[T(e 1) T(e 2)]=[\cos \theta \quad$ matrix for $-\sin \theta]$ rotation
[sin θ
$\cos \theta]$
reflection across y-axis: $T(x, y)=(-x, y)$ reflection across x-axis: $T(x, y)=(y,-x)$ reflection across diagonal $y=x, T(x, y)=(y$, x)
orthogonal projection onto the x -axis: $\mathrm{T}(\mathrm{x}, \mathrm{y})$ $=(\mathrm{x}, 0)$
orthogonal projection onto the y-axis: $T(x, y)$ $=(0, y)$
$\mathrm{u}=(1 /\|\mathrm{v}\|) \mathrm{v}$; express it vertically as u1 and u2

$\mathrm{A}=$	$\left[(\mathrm{u} 1)^{2} \mathrm{u} 2 \mathrm{u} 1\right]$		projection
	$\left[\mathrm{u} 1 \mathrm{u} 2(\mathrm{u} 2)^{2}\right]$		matrix

contraction with $0 \leq \mathrm{k}<1$ (shrink), $\mathrm{k}>1$ (stretch)
[$\mathrm{x}, \mathrm{y}]$-> [kx, ky]
compression in x-direction $[\mathrm{x}, \mathrm{y}]->[\mathrm{kx}, \mathrm{y}]$ compression in \mathbf{y}-direction $[\mathbf{x}, \mathrm{y}]->[\mathrm{x}, \mathrm{ky}]$ shear in x -direction $\mathrm{T}(\mathrm{x}, \mathrm{y})=(\mathrm{x}+\mathrm{ky}, \mathrm{y})$;
[$x+k y(1, k), y(0,1)$]
shear in y-direction $T(x, y)=(x, y+k x)$;
[$\mathrm{x}(1,0), \mathrm{y}(\mathrm{k}, 1)$]
orthogonal projection on the $x y$-plane: $[x, y$, 0]
orthogonal projection on the xz-plane: [x, 0 , z]
orthogonal projection on the yz -plane: $[0, \mathrm{y}$, z]
reflection about the xy -plane: $[\mathrm{x}, \mathrm{y},-\mathrm{z}]$ reflection about the xz-plane: $[x,-y, z]$
reflection about the yz-plane: $[-x, y, z]$

Sponsored by Readable.com

Measure your website readability!
https://readable.com

Orthogonal Transformation

an orthogonal transformation is a linear transformation $\mathrm{T} ; \mathrm{R}^{\mathrm{n}}$-> R^{n} that preserves lengths; ||T(u)|| = ||u\|
$\|T(u)\|=\|u\|<=>T(x) \cdot T(y)=x \cdot y$ for all x, y in R^{n}
orthogonal matrix is square matrix A such that $\mathrm{A}^{\mathrm{T}}=\mathrm{A}^{-1}$

1. if A is orthogonal, then so is A^{\top} and A^{-1}
2. a product of orthonal matrices is orthogonal
3. if A is orthogonal, then $\operatorname{det}(\mathrm{A})=1$ or -1
4. if A is orthogonal, then rows and columns
of A are each orthonormal sets of vectors

Kernel, Range, Composition

$\operatorname{ker}(T)$ is the set of all vectors x such that $T(x)=0$, RREF matrix, find the vector,
$\operatorname{ker}(\mathrm{T})=\operatorname{span}\{(\mathrm{v})\}$
the solution space of $\mathrm{Ax}=0$ is the null space;
$\operatorname{null}(\mathrm{A})=\operatorname{ker}(\mathrm{A})$
range of $\mathrm{T}, \operatorname{ran}(\mathrm{T})$ is the set of vectors y such that
$y=T(x)$ for some x
$\operatorname{ran}(\mathrm{T})=\operatorname{col}([\mathrm{T}])=\operatorname{span}\{[\operatorname{col} 1],[\operatorname{col} 2]$...\}; Ax $=b$

Important Facts:

1. T is one to one iff $\operatorname{ker}(\mathrm{T})=\{0\}$
2. $A x=b$, if consistent, has a unique solution
iff null $(A)=\{0\} ; \quad A x=0$ has only the trivial solution iff null $(A)=\{0\}$

Important facts 2 :

1. $T: R^{n}->R^{m}$ is onto iff the system $T x=y$ has a solution x in R^{n} for every y in R^{m}
2. $A x=b$ is consistent for every b in $R^{m}(A$ is onto) iff $\operatorname{col}(A)=R^{m}$

The composition of T2 with T1 is: T2 • T1
$(\mathrm{T} 2 \cdot \mathrm{~T} 1)(\mathrm{x})=\mathrm{T} 2(\mathrm{~T} 1(\mathrm{x})) ; \mathrm{T} 2 \cdot \mathrm{~T} 1: \mathrm{R}^{\mathrm{n}}->\mathrm{R}^{\mathrm{m}}$ compostion of linear transformations corresponds to matrix application: [T2 \circ T1] = [T1] [T2]

Kernel, Range, Composition (cont)

$[T(\theta 1+\theta 2)]=[T \theta 2] \circ[T \theta 1] ;$
rotate then shear \ddagger shear then rotate
linear trans T : $R^{n}->R^{m}$ has an inverse iff T is one to one, $T^{-1}: R^{m}->R^{n}, T x=y<=>x=$ $\mathrm{T}^{-1} \mathrm{y}$
for Rn to Rn, $\left[T^{-1}\right]=[T]^{-1} ;[T]^{-1} \circ T=1 n<=>$ $\left[T^{-1}\right][T]=\square n$
1 n is identity transformation; $\square \mathrm{n}$ is identity matrix

Basis, Dimension, Rank

S is a basis for the subspace V of R^{n} if: S is linearly idenpendent and $\operatorname{span}(\mathrm{S})=\mathrm{V}$ $\operatorname{dim}(\mathrm{V})=\mathrm{k}, \mathrm{k}$ is the \# of vectors
$\operatorname{row}(A)=$ rows with leading ones after RREF
$\operatorname{col}(A)=$ columns with leading ones from original A
null(A) $=$ free variable's vectors
$\operatorname{null}\left(\mathrm{A}^{\top}\right)=\operatorname{after}$ transform, the free variable vector
The Rank Theorem: $\operatorname{rank}(\mathrm{A})=\operatorname{rank}\left(\mathrm{A}^{\top}\right)$ for any matrix have the same dimension
$\operatorname{rank}(\mathrm{A})=$ \# of free vectors in span
$\operatorname{dim}(\operatorname{row}(A))=\operatorname{dim}(\operatorname{col}(A))=\operatorname{rank}(A)$
$\operatorname{dim}(\operatorname{null}(\mathrm{A}))=\operatorname{nullity}(\mathrm{A})$

Orthogonal Compliment, DImention
Theorem
$S^{\perp}=\left\{v \in R^{n} \mid v \cdot w=0\right.$ for all $\left.w \in S\right\}$
S^{\perp} is a subspace of R^{n}; $S^{\perp}=\operatorname{span}(S)^{\perp}=W^{\perp}$
$\operatorname{row}(A)^{\perp}=\operatorname{null}(A) \quad \operatorname{null}(A)^{\perp}=\operatorname{row}(A)$
$\left(\left(S^{\perp}\right)^{\perp}=S\right.$ iff S is
subspace
$\operatorname{col}(A)^{\perp}=\operatorname{null}\left(A^{\top}\right) \quad \operatorname{null}\left(A^{\top}\right)^{\perp}=\operatorname{col}(A)$
The Dimension $\quad \operatorname{rank}(\mathrm{A})+\operatorname{nullity}(\mathrm{A})=$
Theorem n
A is $m \times n$ matrix $\quad(k+(n-k)=n)$
if W is a subspace $\quad \operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)=$
of R^{n}
n

Published 16th July, 2020.
Last updated 10th August, 2020.
Page 4 of 4 .

Sponsored by Readable.com
Measure your website readability! https://readable.com

