
Assembly for Reverse Engeneering Cheat Sheet
by FFY00 via cheatography.com/51103/cs/14023/

 General Registers

EAX Accumu lator

EBX Base

ECX Counter

EDX Data

 Pointer Registers

ESP Stack Pointer, “top” of the current stack
frame (lower memory)

EBP Base Pointer, “bottom” of the current
stack frame (higher memory)

EIP Instru ction Pointer, pointer to the next
instru ction to be executed by the CPU

 Index Registers

ESI Source Index, it is used as source index
for string operations

EDI Destin ation Index, it is used as
destin ation index for string operations

 Flags Registers (EFLAGS)

ZF Zero Flag, set when result of an operation
equals zero

CF Carry Flag, set when the result of an
operation is too large/ small

SF Sign Flag, set when the result of an
operation is negative

 Stack

Stack is a LIFO-S torage (Last In First Out)

 Moving Data

mov ebx, eax Move the value in EAX to
EBX

mov eax,
0xDEADBEEF

Move 0xDEA DBEEF into
EAX

mov edx,
DWORD PTR
[0x414 24344]

Move the 4-byte value at
address 0x414 24344 into
EDX

mov ecx,
DWORD PTR
[edx]

Move the 4-byte value at
the address in EDX, into
ECX

 Moving Data (cont)

mov eax,
DWORD PTR
[ecx+e si*8]

Move the value at the
address ECX+E SI*8 into
EAX

mov bx,
0C3EEh

Sign bit of BL is now 1: BH
== 1100 0011, BL == 1110
1110

movsx ebx, bx Load signed 16-bit value into
32-bit register and sign-
e xtend

movzx dx, bl Load unsigned 8-bit value
into 16-bit register and zero-
e xtend

lea edi,
[esi+0Bh]

Add 11 to ESI and store the
result in EDI

eax is the value stored in eax
[eax] is the value pointed to by eax

 Data Types

BYTE 1 Byte (8 bits)

WORD 2 Bytes (16 bits)

DOUBLE WORD 4 Bytes (32 bits)

QUAD WORD 8 Bytes (64 bits)

By FFY00
cheatography.com/ffy00/

Not published yet.
Last updated 18th December, 2017.
Page 1 of 2.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/ffy00/
http://www.cheatography.com/ffy00/cheat-sheets/assembly-for-reverse-engeneering
/uploads/ffy00_1513637484_stack.png
http://www.cheatography.com/ffy00/
https://readability-score.com

Assembly for Reverse Engeneering Cheat Sheet
by FFY00 via cheatography.com/51103/cs/14023/

 Frequent Instru ctions

mov MOV is the instru ction used for
assign ment. MOV can move data
between a register and memory.

movsx move with Sign Extens ion. The data
is moved from a smaller register into a
bigger register, and the sign is
preserved.

movzx move with Zero Extens ion. The data
is moved from a smaller register into a
bigger register, and the sign is
ignored.

lea Similar to MOV, except that math can
be done on the original value before it
is used. The [and] characters always
surround the second parameter, but in
this case they do not indicate
derefe ren cing.

 Frequent Instru ctions (cont)

push Decrements the stack pointer by the
size of the operand, then saves the
operand to the new address.
Equivalent to sub esp, 4 | mov

DWORD PTR [esp], ebx

pop Sets the operand to the value on the
stack, then increments the stack
pointer by the size of the operand.
Equivalent to mov ebx, DWORD PTR

[esp] | add esp, 4

cmp Compares two operands and sets or
unsets flags in the flags register based
on the result.

test Bitwise AND.

rep,
repnz,
repz

Repeat while Equal/Non Zero/Zero.

By FFY00
cheatography.com/ffy00/

Not published yet.
Last updated 18th December, 2017.
Page 2 of 2.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/ffy00/
http://www.cheatography.com/ffy00/cheat-sheets/assembly-for-reverse-engeneering
http://www.cheatography.com/ffy00/
https://readability-score.com

	Assembly for Reverse Engeneering Cheat Sheet - Page 1
	 General Registers
	 Stack
	 Pointer Registers
	 Index Registers
	 Data Types
	 Moving Data
	 Flags Registers (EFLAGS)

	Assembly for Reverse Engeneering Cheat Sheet - Page 2
	 Frequent Instructions

