Assembly for Reverse Engeneering Cheat Sheet
by FFY0O via cheatography.com/51103/cs/14023/

EAX

Cheatography

Accumulator stack - mov eax, Move the value at the
EBX Base Limit Addresses DWORD PTR address ECX+ESI*8into
ECX Counter W’ [ecx+esi*8] EAX
mov bx, Sign bit of BL is now 1: BH
EDX Data Garbage 0C3EEh == 1100 0011, BL == 1110

1110
2 Pointer Registers
movsx ebx, bx Load signed 16-bit value into

ESP Stack Pointer, “top” of the current stack 32-bit register and sign-

frame (lower memory) extend

EBP Base Pointer, “bottom” of the current movzx dx, bl Load unsigned 8-bit value

stack frame (higher memory) into 16-bit register and zero-

EIP Instruction Pointer, pointer to the next extend
instruction to be executed by the CPU lea edi, Add 71 to ESI and store the
[esi+0Bh] result in EDI/
SAlE QHSIREE VS eax is the value stored in eax
Addresses

ESI Source Index, it is used as source index [eax]is the value pointed to by eax

for string operations

Stack is a LIFO-Storage (Last In First Out) = pata T
EDI Destination Index, it is used as = Data Types
destination index for string operations BYTE 1 Byte (8 bits)

. WORD 2 Bytes (16 bits)
W Flags Registers (EFLAGS) mov ebx, eax Move the value in EAX to
EBX DOUBLE WORD 4 Bytes (32 bits)

ZF Zero Flag, set when result of an operation

mov eax, Move OxDEADBEEF into QUAD WORD 8 Bytes (64 bits)

CEHES D 0xDEADBEEF EAX
CF Carry I.:Iag., set when the result of an SR, Move the 4-byte value at
operation is too large/small DWORD PTR address 0x41424344 into
SF Sign Flag, set when the result of an [0x41424344] EDX
GPEMEIn B (YD mov ecx, Move the 4-byte value at
DWORD PTR the address in EDX, into
[edx] ECX
By FFY00 Not published yet. Sponsored by Readability-Score.com
cheatography.com/ffy00/ Last updated 18th December, 2017. Measure your website readability!

Page 1 of 2. https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/ffy00/
http://www.cheatography.com/ffy00/cheat-sheets/assembly-for-reverse-engeneering
/uploads/ffy00_1513637484_stack.png
http://www.cheatography.com/ffy00/
https://readability-score.com

Cheatography

Frequent Instructions

Assembly for Reverse Engeneering Cheat Sheet
by FFY0O via cheatography.com/51103/cs/14023/

Frequent Instructions (cont)

mov MOV is the instruction used for push Decrements the stack pointer by the
assignment. MOV can move data size of the operand, then saves the
between a register and memory. operand to the new address.
movsx move with Sign Extension. The data Equivalentto sub esp, 4 | mov
is moved from a smaller register into a DWORD PTR [esp], ebx
bigger register, and the sign Is pop Sets the operand to the value on the
preserved. stack, then increments the stack
movzx move with Zero Extension. The data pointer by the size of the operand.
is moved from a smaller register into a Equivalent tomov ebx, DWORD PTR
bigger register, and the sign is lesp] | add esp, 4
ignored.
cmp Compares two operands and sets or
lea Similar to MOV, except that math can unsets flags in the flags register based
be done on the original value before it eninenes
is used. The [and] characters always
surround the second parameter, but in test Bitwise AND.
this case they do not indicate rep, Repeat while Equal/Non Zero/Zero.
dereferencing. repnz,
repz

By FFY00
cheatography.com/ffy00/

Not published yet. Sponsored by Readability-Score.com
Last updated 18th December, 2017.

Page 2 of 2.

Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/ffy00/
http://www.cheatography.com/ffy00/cheat-sheets/assembly-for-reverse-engeneering
http://www.cheatography.com/ffy00/
https://readability-score.com

	Assembly for Reverse Engeneering Cheat Sheet - Page 1
	 General Registers
	 Stack
	 Pointer Registers
	 Index Registers
	 Data Types
	 Moving Data
	 Flags Registers (EFLAGS)

	Assembly for Reverse Engeneering Cheat Sheet - Page 2
	 Frequent Instru­ctions

