

Astronomy Cheat Sheet

Third Law of Motion

by fausyo8 via cheatography.com/69581/cs/17592/

How do we describe motion?		
speed	the rate at which an object is moving	
velocity	speed in a certain direction	
accele- ration	a change in velocity, meaning a change in either speed or direction.	
momentum	mass times velocity	
force	can change an object's momentum, causing it to	

Mass vs. Weight

How is mass different from weight?

accelerate

An object's mass is the same no matter where it is located, but its weight varies with the strength of gravity or other forces acting on the object.

When is an object weightless?

An object is weightless when it is in **freefall** even those the mass is *unchanged*

How did Newton change our view of the universe?

Newton showed that the same physical laws that operate on Earth also operate in the heavens, making it possible to learn about the universe by studying physical laws on Earth.

This went against Aristotle.

Newton's Laws of Motion		
Newton's First Law of Motion	An object moves at a constant velocity if there is no net force acting upon it.	
Newton's Second Law of Motion	Force = mass * velocity	
Newton's	For any force, there is always	

Why do objects move at constant velocity?

reaction force.

an equal and opposite

Conser-	an object's momentum	
vation of	cannot change unless the	
momentum	object transfers momentum to	
	or from other objects	

When no force is present, no momentum can be transferred so an object must maintain its speed and direction.

What keeps a planet rotating and orbiting the Sun?

Conser-	a planet's rotation and orbit	
vation of	cannot change unless the	
angular	planet transfers angular	
momentum	moment to another object	

The planets in our solar system do not exchange substantial angular momentum with each other or anything else, so their orbits and rotation rates remain steady.

Basic Energy

kinetic energy	energy of motion
radiative energy	energy carried by light
potential energy	stored energy

Energy is always conserved—it can be neither created nor destroyed. Objects received whatever energy they now have from exchanges of energy with other objects.

What determines the strength of gravity?

Universal	states that every object attracts
law of	every other object with a gravit-
gravit-	ational force that is proportional
ation	to the product of the objects'
	masses and declines with the
	square of the distance between
	their centers

Newton's and Kepler's laws

- 1) Newton showed that any object going around another object will obey Kepler's first two laws.
- 2) He showed that ellipses (or circles), which define **bound orbits**, are not the only possible orbital shape—orbits can also be **unbound** and in the form of parabolas or hyperbolas.
- 3) He showed that two objects actually orbit their common **center of mass**.
- 4) Newton's version of Kepler's third law allows us to calculate the masses of orbiting objects from their orbital periods and distances.

By fausy08 cheatography.com/fausy08/

Not published yet. Last updated 23rd October, 2018. Page 1 of 1. Sponsored by Readable.com

Measure your website readability!

https://readable.com