Cheatography

Photosynthesis/Cellular Respiration Cheat Sheet
by nadia (fatbuttluver) via cheatography.com/122569/cs/22807/

Major Formulas	
Cellular	C6H12O6 + O2 → H2O
Respiration	+ CO2
Photosynth-	H2O + CO2 →
esis	C6H12O6 + O2
	Other

(NADH, FADH2, NADPH):

Carry e- in the form of H+ ions. They drop eeither at the ETC to make ATP or the Calvin Cycle to help bond formation.

ATP Synthase:

Enzyme that synthesizes ATP - Uses chemiosmosis in order to in order to phosphorylate ADP into ATP

ATP Synthase

ATP Synthase transports a proton down the gradient and uses the energy to complete the phosphorylation of ADP to ATP.

Phosphorylation

ETC

four protons pumped from matrix to intermembrane space 2. Redox of FADH₂ at Complex II, Coenzyme Q picks up electrons (from Complex I and II) and transports to Complex III 3. Redox of Complex III, four protons pumped from matrix to intermembrane space, carrier C transports electrons to Complex IV 4. Redox of Complex IV, two protons pumped from matrix to intermembrane space, formation of H₂0 (20% of water in body) 5. ATP Synthase action, pumps protons from intermembrane space to matrix, produces ATP from ADP + Pi + energy

Oxygen = Final e- Acceptor.

Step 1: Generating a Proton Motive Force. Step 2: ATP Synthesis via Chemiosmosis.

Step 3: Reduction of Oxygen.

Summary: Oxidative Phosphorylation.

Fermentatio	pn
Facult- ative Anaero- bes	Tolerate, but do not use, O2
Obligate Anaero- bes	Cannot live in an environment w/O ₂
Alcoholic Fermen- tation	Converts pyruvate into ethyl alcohol + CO ₂ & oxidizes NADH to NAD+
Lactic Acid Fermen- tation	Reduces pyruvate into lactic acid (lactate) & oxidizes NADH to NAD+

Photosynthesis

Light Dependent Stage

Key Points

In light-dependent reactions, the energy from sunlight is absorbed by chlorophyll and converted into chemical energy in the form of electron carrier molecules like ATP and NADPH.

• Light energy is harnessed in Photosystems I and II, both of which are present in the thylakoid membranes of chloroplasts.

Chemiosmosis

Chemiosmosis

The movement of ions across a semipermeable membrane, down their electrochemical gradient. An example of this would be the generation of adenosine tripho-

sphate (ATP) by the movement of hydrogen ions (H+) across a membrane during cellular respiration or photosynthesis.

Photorespiration, C-4, & CAM

Phot- oresp.	rubisco binds with O2 instead of CO2; produces no ATP or sugar
C-4 Plants	Use alternate C-fixation (PEP carboxylase) that ends in a 4C compound (occurs in mesophyll & bundle sheath cells)
CAM Plants	Carbon fixation to organic acids at night \rightarrow light reactions release CO ₂ in the day

Glycolysis

2 ATP + 1 Glucose \rightarrow 2 pyretic acid + 4 ATP

PFK = allosteric enzyme inhibited by ATP

Substrate Level Phosphorylation: ATP + pyruvate

Pyruvate + coenzyme A: acetyl CoA Products: 3 NADH, 1 ATP, 1 FADH, CO₂ Equation: 2acetyl groups + 6NAD+ + 2FAD + 2ADP + 2Pi \rightarrow 4CO2 + 6NADH + 6H⁺ + 2 FADH2 + 2ATP

By nadia (fatbuttluver)

cheatography.com/fatbuttluver/

Key Points

Carbohydrate molecules are assembled from carbon dioxide using the chemical energy harvested during the light-dependent reactions.

Published 14th May, 2020. Last updated 14th May, 2020. Page 1 of 2. Sponsored by **Readable.com** Measure your website readability! https://readable.com