\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{nadia (fatbuttluver)} \pdfinfo{ /Title (gene-expression-and-regulation.pdf) /Creator (Cheatography) /Author (nadia (fatbuttluver)) /Subject (Gene Expression \& Regulation Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{D459AB} \definecolor{LightBackground}{HTML}{FCF4F9} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Gene Expression \& Regulation Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{nadia (fatbuttluver)} via \textcolor{DarkBackground}{\uline{cheatography.com/122569/cs/22809/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}nadia (fatbuttluver) \\ \uline{cheatography.com/fatbuttluver} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 15th May, 2020.\\ Updated 14th May, 2020.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{DNA Structure \& Replication}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Structure of DNA}} \{\{ac\}\} \{\{bt\}\}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{bt\}\} \{\{fa-chevron-circle-right\}\} Each DNA nucleotide is made up of 5-carbon sugar called deoxyribose, a phosphate group, and a nitrogenous base.} \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} DNA uses bases A, C, G, \& T. (RNA uses A, C, G, \& U)} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Double Helix}} \{\{ac\}\} \{\{bt\}\}} \tn % Row Count 7 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{bt\}\} \{\{fa-chevron-circle-right\}\} DNA has an antiparallel structure→ The 2 strands run in opposite directions of eachother.} \tn % Row Count 10 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} Each strand has a 5' end and a 3' end.} \tn % Row Count 12 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{DNA Replication}} \{\{ac\}\} \{\{bt\}\}} \tn % Row Count 13 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{bt\}\} \{\{fa-chevron-circle-right\}\} DNA is {\emph{Semi-Conservative}} \{\{nl\}\} →Each of the 2 strands in DNA acts as a template to produce 2 new strands.} \tn % Row Count 16 (+ 3) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} Enzymes "unzip" DNA molecules by breaking the hydrogen bonds that hold the two strands together.} \tn % Row Count 19 (+ 3) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} Primary enzyme involved is {\emph{DNA polymerase}}\{\{nl\}\}→ Joins nucleotides to synthesize the new complementary strand. \{\{nl\}\} →Proofreads each DNA strand to prevent errors.} \tn % Row Count 23 (+ 4) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{bt\}\} {\bf{Leading \& Lagging Strand}} \{\{ac\}\}} \tn % Row Count 24 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{bt\}\} \{\{fa-chevron-circle-right\}\} {\emph{Leading Strand}} \{\{nl\}\}→runs 5' to 3' towards the fork and is made continuously.} \tn % Row Count 27 (+ 3) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} {\emph{Lagging Strand}} \{\{nl\}\}→runs 5' to 3' away from the fork and is made in small pieces called Okazaki fragments.} \tn % Row Count 30 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Other Things to Know:}} \newline DNA polymerase only synthesizes DNA in the 5' to 3' direction only. The difference between the leading and lagging strands is that the leading strand is formed towards replication fork, while the lagging strand is formed away from replication fork. \newline \newline DNA replication is not the same as cell division. Replication occurs before cell division, during the S phase of the cell cycle. However, replication only concerns the production of new DNA strands, not of new cells.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Replication}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/fatbuttluver_1589491535_Screen Shot 2020-05-14 at 4.54.33 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.18988 cm} x{2.78712 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Mutations}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{point mutation}} & affects 1 nucleotide pair \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} 1. silent mutations & do not change amino acid translation \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} 2.missense mutations & a single nucleotide change results in a codon that codes for a different amino acid \tn % Row Count 8 (+ 4) % Row 3 \SetRowColor{white} 3. nonsense mutation & a regular amino acid codon is changed into a stop codon, ending translation \tn % Row Count 12 (+ 4) % Row 4 \SetRowColor{LightBackground} {\bf{insertion or deletion \{\{bt\}\}}} & addition/loss of nucleotide pairs\{\{bt\}\} \tn % Row Count 14 (+ 2) % Row 5 \SetRowColor{white} 1. frame shift mutation & deletion or insertion in a DNA sequence that shifts the way the sequence is read \tn % Row Count 18 (+ 4) % Row 6 \SetRowColor{LightBackground} {\bf{mutagens}} & forces that interact with DNA in ways that cause mutation {\emph{example: xrays}} \tn % Row Count 22 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Transcription}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Transcription Key Points}} \{\{ac\}\}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} Involves copying a gene's DNA sequence to make an RNA molecule.} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} Performed by RNA polymerase} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} 3 Stages: Initiation, Elongation, Termination.} \tn % Row Count 7 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} RNA molecules are spliced and have a 5' cap and poly-A tail put on their ends. (Eukaryotes) \{\{bb\}\}\}} \tn % Row Count 10 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Initiation, Elongation, Termination}} \{\{ac\}\} \{\{bt\}\}} \tn % Row Count 12 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} RNA polymerase binds to a sequence of DNA called the promoter, found near the beginning of a gene. Each gene (or group of co-transcribed genes, in bacteria) has its own promoter. Once bound, RNA polymerase separates the DNA strands, providing the single-stranded template needed for transcription.} \tn % Row Count 19 (+ 7) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\}One strand of DNA, the template strand, acts as a template for RNA polymerase. As it "reads" this template one base at a time, the polymerase builds an RNA molecule out of complementary nucleotides, making a chain that grows from 5' to 3'. The RNA transcript carries the same information as the non-template (coding) strand of DNA, but it contains the base uracil (U) instead of thymine (T).} \tn % Row Count 28 (+ 9) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\}Sequences called terminators signal that the RNA transcript is complete. Once they are transcribed, they cause the transcript to be released from the RNA polymerase. An example of a termination mechanism involving formation of a hairpin in the RNA is shown below.} \tn % Row Count 34 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{DNA}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/fatbuttluver_1589491316_Screen Shot 2020-05-14 at 4.50.35 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.34379 cm} x{3.63321 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Terms}} \tn % Row 0 \SetRowColor{LightBackground} DNA & Nucleic acid that transmits genetic information from parent to offspring and codes for the production of proteins \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \seqsplit{Nucleotide} & Building block of nucleic acids \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} Double Helix & Structure of two strands, intertwining around an axis like a twisted ladder \tn % Row Count 9 (+ 3) % Row 3 \SetRowColor{white} DNA \seqsplit{replication} & Process during which a double-stranded DNA molecule is copied to produce two identical DNA molecules \tn % Row Count 13 (+ 4) % Row 4 \SetRowColor{LightBackground} Base Pairing & Principle in which the nitrogenous bases of the DNA molecules bond with one another (AT, CG)) \tn % Row Count 17 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{DNA vs. RNA}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{DNA}}\{\{ac\}\} \{\{br\}\} & {\bf{RNA}} \{\{ac\}\} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Double Stranded, Anti-parallel \{\{br\}\} & Single Stranded \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} A+T and C+G \{\{br\}\} & A+U and C+G \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} Mostly Found in Nucleus \{\{br\}\} & Mostly Found in Cytoplasm \tn % Row Count 6 (+ 2) % Row 4 \SetRowColor{LightBackground} Deoxyribose\{\{br\}\} & Ribose \tn % Row Count 7 (+ 1) % Row 5 \SetRowColor{white} Long Polymer\{\{br\}\} & Much Shorter \tn % Row Count 8 (+ 1) % Row 6 \SetRowColor{LightBackground} Forms Double Helix Structure\{\{br\}\} & Forms Secondary or Tertiary Structure \tn % Row Count 10 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Translation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Translation}} \{\{ac\}\}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} tRNAs are molecular "bridges" that connect mRNA codons to the amino acids they encode. \{\{nl\}\} \{\{fa-chevron-circle-right\}\}One end has an anticodon, which can bind to specific mRNA codons. (sequence of 3 nucleotides) \{\{nl\}\} \{\{fa-chevron-circle-right\}\}The other end carries the amino acid specified by the codons.} \tn % Row Count 8 (+ 7) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Initiation, Elongation, Termination}} \{\{ac\}\}} \tn % Row Count 9 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} The ribosome assembles around the mRNA to be read and the first tRNA (carrying the amino acid MET{[}AUG{]}). This initiation complex is needed in order for translation to get started.} \tn % Row Count 14 (+ 5) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} The mRNA is read one codon at a time, and the amino acid matching each codon is added to a growing protein chain. \{\{nl\}\}\{\{fa-chevron-circle-right\}\} Each time a new codon is exposed,\{\{nl\}\} →a matching tRNA binds to the codon \{\{nl\}\}→the existing amino acid chain (polypeptide) is linked onto the amino acid of the tRNA via a chemical reaction, \{\{nl\}\}→the mRNA is shifted one codon over in the ribosome, exposing a new codon for reading. \{\{nl\}\} \{\{fa-chevron-circle-right\}\} tRNAs move through the A, P, and E sites of the ribosome. This process repeats many times as new codons are read and new amino acids are added to the chain.} \tn % Row Count 28 (+ 14) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} The finished polypeptide chain is released. It begins when a stop codon (UAG, UAA, or UGA) enters the ribosome, triggering a series of events that separate the chain from its tRNA and allow it to drift out of the ribosome. \{\{nl\}\} \{\{fa-chevron-circle-right\}\} The polypeptide may still need to fold into the right 3D shape, undergo processing,get shipped to the right place in the cell, or combine with other polypeptides before it can do its job as a functional protein.} \tn % Row Count 38 (+ 10) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Transcription \& Translation}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/fatbuttluver_1589491278_Screen Shot 2020-05-14 at 3.58.41 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{The Central Dogma of Molecular Biology}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{The Central Dogma (TCD) }} \{\{ac\}\}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} During expression of a protein-coding gene, information flows from DNA → RNA → protein. (This process is known as CD)} \tn % Row Count 4 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{The Lac Operon}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{The Lac Operon of E.Coli}} \{\{ac\}\}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} Conditions: Lactose is available and Glucose is not.} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} More information \{\{link="https://www.khanacademy.org/science/ap-biology/gene-expression-and-regulation/regulation-of-gene-expression-and-cell-specialization/a/the-lac-operon?modal=1"\}\}here\{\{/link\}\}} \tn % Row Count 8 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} x{4.4793 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{3 Types of RNA}} \tn % Row 0 \SetRowColor{LightBackground} mRNA & synthesized using DNA template, attaches to ribosome in cytoplasm and specifies the primary structure of protein \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} rRNA & molecules...and proteins make up the ribosomes \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} tRNA & translates between nucleic acid (DNA) and protein lang. by carrying specific amino acids to ribosome, where they recognize the appropriate codons in the mRNA \tn % Row Count 11 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}