Cheatography

Gene Expression & Regulation Cheat Sheet by nadia (fatbuttluver) via cheatography.com/122569/cs/22809/

DNA Structure & Replication

Structure of DNA

• Each DNA nucleotide is made up of 5carbon sugar called deoxyribose, a phosphate group, and a nitrogenous base.

• DNA uses bases A, C, G, & T. (RNA uses A, C, G, & U)

Double Helix

● DNA has an antiparallel structure → The 2 strands run in opposite directions of eachother.

Each strand has a 5' end and a 3' end.

DNA Replication

DNA is Semi-Conservative

 $\rightarrow Each$ of the 2 strands in DNA acts as a template to produce 2 new strands.

Enzymes "unzip" DNA molecules by breaking the hydrogen bonds that hold the two strands together.

• Primary enzyme involved is DNA polymerase

 \rightarrow Joins nucleotides to synthesize the new complementary strand.

 \rightarrow Proofreads each DNA strand to prevent errors.

Leading & Lagging Strand

Leading Strand

 \rightarrow runs 5' to 3' towards the fork and is made continuously.

By nadia (fatbuttluver)

Lagging Strand

 \rightarrow runs 5' to 3' away from the fork and is made in small pieces called Okazaki fragments.

Other Things to Know:

DNA polymerase only synthesizes DNA in the 5' to 3' direction only. The difference between the leading and lagging strands is that the leading strand is formed towards replication fork, while the lagging strand is formed away from replication fork.

DNA replication is not the same as cell division. Replication occurs before cell division, during the S phase of the cell cycle. However, replication only concerns the production of new DNA strands, not of new cells.

Replication

5' A G T T A G 3' 3' T C A A T C 5'	DNA double helix
\checkmark	
5' A G T T A G 3'	Hydrogen bonds break
3' T C A A T C 5'	and helix opens
↓	
5' A G T T A G 3' 3' A A T C 5'	Each strand of DNA acts as a template for
5' A G T T $3'$ 3' T C A A T C 5'	synthesis of a new, complementary strand
\downarrow	
5' A G T T A G 3'	Deplication and ware
3' T C A A T C 5'	Replication produces two identical DNA double helices, each
5' A G T T A G 3'	with one new and one
3' T C A A T C 5'	old strand

Published 15th May, 2020. Last updated 14th May, 2020. Page 1 of 3.

Mutations

Mutations	
point mutation	affects 1 nucleotide pair
1. silent mutations	do not change amino acid translation
2.missense mutations	a single nucleotide change results in a codon that codes for a different amino acid
3. nonsense mutation	a regular amino acid codon is changed into a stop codon, ending translation
insertion or deletion	addition/loss of nucleotide pairs
1. frame shift mutation	deletion or insertion in a DNA sequence that shifts the way the sequence is read
mutagens	forces that interact with DNA in ways that cause mutation <i>example: xrays</i>

Transcription

Transcription Key Points

Involves copying a gene's DNA sequence to make an RNA molecule.

Performed by RNA polymerase

• 3 Stages: Initiation, Elongation, Termination.

RNA molecules are spliced and have a
 5' cap and poly-A tail put on their ends.
 (Eukaryotes) }

Initiation, Elongation, Termination

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/fatbuttluver/

Cheatography

Gene Expression & Regulation Cheat Sheet by nadia (fatbuttluver) via cheatography.com/122569/cs/22809/

Transcription (cont)

RNA polymerase binds to a sequence of DNA called the promoter, found near the beginning of a gene. Each gene (or group of co-transcribed genes, in bacteria) has its own promoter. Once bound, RNA polymerase separates the DNA strands, providing the single-stranded template needed for transcription.

• One strand of DNA, the template strand, acts as a template for RNA polymerase. As it "reads" this template one base at a time, the polymerase builds an RNA molecule out of complementary nucleotides, making a chain that grows from 5' to 3'. The RNA transcript carries the same information as the non-template (coding) strand of DNA, but it contains the base uracil (U) instead of thymine (T).

• Sequences called terminators signal that the RNA transcript is complete. Once they are transcribed, they cause the transcript to be released from the RNA polymerase. An example of a termination mechanism involving formation of a hairpin in the RNA is shown below.

Term

DNA Nucleic a	cid that transmits
genetic ir parent to	nformation from offspring and codes roduction of proteins
Nucleotide Building	block of nucleic acids
Helix intertwini	e of two strands, ng around an axis sted ladder
replication double-s molecule	during which a tranded DNA is copied to produce ical DNA molecules
Pairing enous ba molecule	in which the nitrog- uses of the DNA is bond with one AT, CG))

DNA vs. RNA DNA **RNA** Double Stranded. Single Stranded Anti-parallel A+U and C+G A+T and C+G Mostly Found in Mostly Found in Nucleus Cytoplasm Deoxyribose Ribose Long Polymer Much Shorter Forms Double Forms Secondary or Helix Structure **Tertiary Structure**

Translation

Translation

• tRNAs are molecular "bridges" that connect mRNA codons to the amino acids they encode.

• One end has an anticodon, which can bind to specific mRNA codons. (sequence of 3 nucleotides)

• The other end carries the amino acid specified by the codons.

Initiation, Elongation, Termination

• The ribosome assembles around the mRNA to be read and the first tRNA (carrying the amino acid MET[AUG]). This initiation complex is needed in order for translation to get started.

• The mRNA is read one codon at a time, and the amino acid matching each codon is added to a growing protein chain.

● Each time a new codon is exposed, →a matching tRNA binds to the codon →the existing amino acid chain (polypeptide) is linked onto the amino acid of the tRNA via a chemical reaction,

→the mRNA is shifted one codon over in the ribosome, exposing a new codon for reading.

• tRNAs move through the A, P, and E sites of the ribosome. This process repeats many times as new codons are read and new amino acids are added to the chain.

• The finished polypeptide chain is released. It begins when a stop codon (UAG, UAA, or UGA) enters the ribosome, triggering a series of events that separate the chain from its tRNA and allow it to drift out of the ribosome.

• The polypeptide may still need to fold into the right 3D shape, undergo processing,get shipped to the right place in the cell, or combine with other polypeptides before it can do its job as a functional protein.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

By nadia (fatbuttluver)

cheatography.com/fatbuttluver/

Published 15th May, 2020. Last updated 14th May, 2020. Page 2 of 3.

Cheatography

Transcription & Translation

The Central Dogma of Molecular Biology

The Central Dogma (TCD)

The Lac Operon

The Lac Operon of E.Coli

- Oconditions: Lactose is available and Glucose is not.
- More information here

3 Types of RNA

- mRNA synthesized using DNA template, attaches to ribosome in cytoplasm and specifies the primary structure of protein
 rRNA molecules...and proteins make up the ribosomes
 tRNA translates between nucleic acid (DNA) and protein lang. by
- carrying specific amino acids to ribosome, where they recognize the appropriate codons in the mRNA

By **nadia** (fatbuttluver)

Published 15th May, 2020. Last updated 14th May, 2020. Page 3 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/fatbuttluver/