\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{nadia (fatbuttluver)} \pdfinfo{ /Title (apbiochap7-osmosis-water-potential-etc.pdf) /Creator (Cheatography) /Author (nadia (fatbuttluver)) /Subject (APBioChap7 Osmosis, Water Potential, etc. Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{C476BA} \definecolor{LightBackground}{HTML}{F7EDF6} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{APBioChap7 Osmosis, Water Potential, etc. Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{nadia (fatbuttluver)} via \textcolor{DarkBackground}{\uline{cheatography.com/122569/cs/22832/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}nadia (fatbuttluver) \\ \uline{cheatography.com/fatbuttluver} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 15th May, 2020.\\ Updated 15th May, 2020.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{x{2.18988 cm} x{2.78712 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Major Formulas}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Calculating Water Potential}} & Ψ = Ψ\textasciicircum{}s\textasciicircum{} + Ψ\textasciicircum{}p\textasciicircum{} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} {\bf{Calculating Solute Potential}} & Ψ\textasciicircum{}s\textasciicircum{} = -iRCT \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\bf{Key}} \{\{ac\}\} \{\{bt\}\}} \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} {\bf{Ψ\textasciicircum{}s\textasciicircum{}}} \{\{ac\}\} & Solute Potential \tn % Row Count 6 (+ 1) % Row 4 \SetRowColor{LightBackground} {\bf{Ψ\textasciicircum{}p\textasciicircum{}}} \{\{ac\}\} & Pressure Potential \tn % Row Count 7 (+ 1) % Row 5 \SetRowColor{white} {\bf{i}} \{\{ac\}\} & The \# of particles the molecule will make in water \tn % Row Count 10 (+ 3) % Row 6 \SetRowColor{LightBackground} {\bf{C}} \{\{ac\}\} & Molar Conentration (from experimental data) \tn % Row Count 12 (+ 2) % Row 7 \SetRowColor{white} {\bf{R}} \{\{ac\}\} & Pressure Constant = 0.0831 liter bar/mole K \tn % Row Count 14 (+ 2) % Row 8 \SetRowColor{LightBackground} {\bf{T}} \{\{ac\}\} & Temperature in degrees Kelvin = 273 + C° of solution \tn % Row Count 17 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Membrane Structure}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/fatbuttluver_1589558315_Screen Shot 2020-05-15 at 11.57.20 AM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Principal components:}} \newline \{\{fa-chevron-circle-right\}\}Lipids ({\emph{phospholipids, cholesterol}}), proteins, carbohydrate groups. \newline \newline {\bf{Phospholipids}} \newline \{\{fa-chevron-circle-right\}\}Made of glycerol, two fatty acid tails, and a phosphate-linked head group. \newline →A phospholipid bilayer involves two layers of phospholipids with their tails pointing inward \newline \newline {\bf{Cholesterol}} \newline \{\{fa-chevron-circle-right\}\}Lipid composed of four fused carbon rings \newline →Found alongside phospholipids in the core of the membrane.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Active Transport}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Primary Active Transport}} \{\{ac\}\}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} Directly uses a source of chemical energy (e.g., ATP) to move molecules across a membrane against their gradient} \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Secondary Active Transport}} \{\{ac\}\}} \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} Uses an electrochemical gradient – generated by active transport – as an energy source to move molecules against their gradient \{\{nl\}\} →Does not directly require a chemical source of energy such as ATP} \tn % Row Count 10 (+ 5) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{The Sodium-Potassium Pump Cycle}} \{\{ac\}\}} \tn % Row Count 11 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} Moves Na\textasciicircum{}+\textasciicircum{} out of cells and K\textasciicircum{}+\textasciicircum{} into them \{\{nl\}\} \{\{fa-chevron-circle-right\}\} Electrogenic pump \{\{nl\}\} \{\{fa-chevron-circle-right\}\} 1. The pump is open to the inside of the cell and binds/takes up 3 Na\textasciicircum{}+\textasciicircum{} ions \{\{nl\}\} \{\{fa-chevron-circle-right\}\} 2. Once the Na\textasciicircum{}+\textasciicircum{} ions bind, the pump is triggered to hydrolize ATP. One P-group is attached to the pump, and then phosphorylated. ADP is released as a by-product. \{\{nl\}\} \{\{fa-chevron-circle-right\}\} 3. Phosphorylation causes the pump to change form so that it then faces the exterior of the cell. Like this, the pump no longer has an affinity for Na\textasciicircum{}+\textasciicircum{} ions, and 3 are released. \{\{nl\}\} \{\{fa-chevron-circle-right\}\} 4. Facing this direction, the pump now has an affinity for K\textasciicircum{}+\textasciicircum{} ions. It binds 2 of them which triggers the release of the P-group attached to the pump. \{\{nl\}\} \{\{fa-chevron-circle-right\}\} 5. With the P-group gone, the cell once again changes form and then faces towards the interior of the cell. \{\{nl\}\} \{\{fa-chevron-circle-right\}\} 6. The pump is now back to step 1, and the cycle repeats.} \tn % Row Count 33 (+ 22) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Active Transport (cont)}} \tn % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The sodium-potassium pump acts primarily by building up a high concentration of potassium ions inside the cell, which makes potassium's concentration gradient very steep. The gradient is steep enough that potassium ions will move out of the cell (via channels), despite a growing negative charge on the interior. This process continues until the voltage across the membrane is large enough to counterbalance potassium's concentration gradient. At this balance point, the inside of the membrane is negative relative to the outside. This voltage will be maintained as long as K\textasciicircum{}+\textasciicircum{}concentration in the cell stays high} \tn % Row Count 13 (+ 13) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Apoptosis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Apoptosis}} \{\{ac\}\}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{may be engulfed when no longer needed} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{cells with genetic damage are replaced} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{defense against infection} \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{signals trigger caspases to carry out apoptosis} \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Hypotonic vs Isotonic vs Hypertonic}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/fatbuttluver_1589559735_Screen Shot 2020-05-15 at 12.21.49 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Isotonic solution:}} Solute concentration is the same as that inside the cell; no net water movement across the plasma membrane \newline \newline {\bf{Hypertonic solution:}} Solute concentration is greater than that inside the cell; cell loses water \newline \newline {\bf{Hypotonic solution:}} Solute concentration is less than that inside the cell; cell gains water \newline \newline Cells without cell walls will shrivel in hypertonic solution and lyse (burst) in a hypotonic solution} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Phospholipid}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/fatbuttluver_1589558773_352079e6dc783dce573875198fcb364180b01331.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Phospholipids are {\bf{ampipathic}} because of their hydrophilic, polar heads and hydrophobic, nonpolar tails. \newline \newline The hydrophilic {\bf{heads of phospholipids in a membrane bilayer face outward}}, contacting the watery fluid both inside and outside the cell. Since water is a polar molecule, it readily forms electrostatic interactions with the phospholipid heads. \newline \newline Phospholipids tuck their fatty acid tails away in the interior of the membrane, where they are shielded from the surrounding water.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Selective Permeability}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} The hydrophobic core of the plasma membrane helps some materials move through the membrane, while it blocks the movement of others} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} Polar molecules can easily interact with the outer face of the membrane, where the negatively charged head groups are found, but they have difficulty passing through its hydrophobic core} \tn % Row Count 9 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} While small ions are the right size to slip through the membrane, their charge prevents them from doing so. Instead, they must be transported by special proteins.} \tn % Row Count 13 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} Larger charged and polar molecules, like sugars and amino acids, also need help from proteins} \tn % Row Count 16 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Organelles}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Nucleolus}} & where rRNA \& ribosomes are synthesized \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} {\bf{Ribosomes}} & protein factories \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} {\bf{Endomembrane System}} & regulates protein traffic+metabolic functions \tn % Row Count 6 (+ 3) % Row 3 \SetRowColor{white} {\bf{Nucleus}} & holds chromatin, surrounded by nuclear envelope \tn % Row Count 9 (+ 3) % Row 4 \SetRowColor{LightBackground} {\bf{ER}} & Rough: makes proteins Smooth: synthesizes lipids, stores Ca++, detoxifies drugs/poisons \tn % Row Count 14 (+ 5) % Row 5 \SetRowColor{white} {\bf{Golgi Apparatus}} & processes, packages, \& secretes substances \tn % Row Count 17 (+ 3) % Row 6 \SetRowColor{LightBackground} {\bf{Lysosomes}} & intracellular digestion \tn % Row Count 19 (+ 2) % Row 7 \SetRowColor{white} {\bf{Mitochondria}} & powerhouse of the cell \tn % Row Count 21 (+ 2) % Row 8 \SetRowColor{LightBackground} {\bf{Vacuoles}} & storage \& pumping out water \tn % Row Count 23 (+ 2) % Row 9 \SetRowColor{white} {\bf{Chloroplast}} & absorbs light \& synthesize sugar \tn % Row Count 25 (+ 2) % Row 10 \SetRowColor{LightBackground} {\bf{Cytoskeleton}} & maintains cell shape, flow, positioning \tn % Row Count 28 (+ 3) % Row 11 \SetRowColor{white} {\bf{Centrioles\{\{nl\}\} Centrosomes MTOCs}} & organize spindle fibers (cell division) \tn % Row Count 30 (+ 2) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Organelles (cont)}} \tn % Row 12 \SetRowColor{LightBackground} {\bf{Cell Wall}} & protects, maintains shape, regulates water intake \tn % Row Count 3 (+ 3) % Row 13 \SetRowColor{white} {\bf{Peroxisomes}} & break down fatty acids to be used for forming membranes and as fuel for respiration, transfer hydrogen from compounds to oxygen to create hydrogen peroxide and then convert hydrogen peroxide into water \tn % Row Count 14 (+ 11) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Osmosis \& Tonicity}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Osmosis}} \{\{ac\}\}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} Osmosis is the movement of water through a semi-permeable membrane from a region of high concentration to a region of low concentration, tending to equalise the concentrations of the water. \{\{nl\}\} \{\{fa-chevron-circle-right\}\} Osmosis is passive transport, meaning it does not require energy to be applied.} \tn % Row Count 8 (+ 7) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Tonicity}} \{\{ac\}\}} \tn % Row Count 9 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} The ability of an extracellular solution to make water move into or out of a cell by osmosis is know as its tonicity. \{\{nl\}\} \{\{fa-chevron-circle-right\}\} A solution's tonicity is related to its osmolarity, which is the total concentration of all solutes in the solution.} \tn % Row Count 15 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Passive Transport}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Diffusion}} \{\{ac\}\}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} A substance moves from an area of high concentration to low concentration until its concentration becomes equal throughout a space} \tn % Row Count 5 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Facilitated Diffusion}} \{\{ac\}\}} \tn % Row Count 6 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} Molecules diffuse across the plasma membrane with assistance from membrane proteins, such as channels and carriers \{\{nl\}\} \{\{fa-chevron-circle-right\}\}A concentration gradient exists for these molecules, so they have the potential to diffuse into (or out of) the cell by moving down it. However, because they are charged or polar, they can't cross the phospholipid part of the membrane without help. Facilitated transport proteins shield these molecules from the hydrophobic core of the membrane, providing a route by which they can cross.} \tn % Row Count 18 (+ 12) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Channels}} \{\{ac\}\}} \tn % Row Count 19 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} Channel proteins span the membrane and make hydrophilic tunnels across it, allowing their target molecules to pass through by diffusion \{\{nl\}\} \{\{fa-chevron-circle-right\}\} Very selective and will accept only one type of molecule for transport \{\{nl\}\} \{\{fa-chevron-circle-right\}\} {\emph{Aquaporins}} are channel proteins that allow water to cross the membrane very quickly, and they play important roles in plant cells, red blood cells, and certain parts of the kidney\{\{nl\}\} \{\{fa-chevron-circle-right\}\} Play an important role in electrical transmission along membranes (in nerve cells) and in muscle contraction (in muscle cells)} \tn % Row Count 32 (+ 13) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Passive Transport (cont)}} \tn % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Carrier Proteins}} \{\{ac\}\}} \tn % Row Count 1 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\{\{fa-chevron-circle-right\}\} Change their shape to move a target molecule from one side of the membrane to the other \{\{nl\}\} \{\{fa-chevron-circle-right\}\} Will change shape in response to binding of their target molecule, with the shape change moving the molecule to the opposite side of the membrane \{\{nl\}\} \{\{fa-chevron-circle-right\}\}Provide hydrophilic molecules with a way to move down an existing concentration gradient (rather than acting as pumps)} \tn % Row Count 10 (+ 9) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.74195 cm} x{3.23505 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Types of Cell Communication}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Quorum Sensing}} & monitors bacteria population density \& controls gene expression \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{Autocrine Signals}} & produced \& used by same cell \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} {\bf{Juxtacrine Signals}} & physically touching cells (gap junctions, plasmodesmata) \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} {\bf{Paracrine Signals}} & adjacent (not touching) cells (synapses, growth factors) \tn % Row Count 11 (+ 3) % Row 4 \SetRowColor{LightBackground} {\bf{Endocrine Signals}} & for all tissues, long distance (hormones) \tn % Row Count 13 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.58804 cm} x{2.38896 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Prokaryote vs Eukaryote}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Prokaryotes}} \{\{ac\}\} & {\bf{Eukaryotes}} \{\{ac\}\} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} no internal \seqsplit{membranes/organelles} & membrane-bound organelles \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} circular DNA & DNA forms chromosomes \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} smaller ribosomes & larger ribosomes \tn % Row Count 7 (+ 1) % Row 4 \SetRowColor{LightBackground} anaerobic or aerobic metabolism & aerobic metabolism \tn % Row Count 9 (+ 2) % Row 5 \SetRowColor{white} no cytoskeleton present & cytoskeleton present \tn % Row Count 11 (+ 2) % Row 6 \SetRowColor{LightBackground} mainly unicellular & mainly multicellular \tn % Row Count 13 (+ 2) % Row 7 \SetRowColor{white} small & large \tn % Row Count 14 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}