UV & Fluorescence Spectroscopy Cheat Sheet by eyeeyuu via cheatography.com/159905/cs/33689/

UV SPECTROSCOPY

Chromophore	Wavelength / nm
->c-c<	150
С—Н	150
>c=c<	190
)c=c<	210-230
)c=o	195 (280 weak)
)c=c _c=o	210-250
	254
ОН	270

Chromophore = portion of a molecule that absorbs light

Analytical purposes

When a beam of radiation is passed through a sample,

- some radiation is absorbed by the sample
- some radiation is reflected or scattered
- some radiation passes straight through

For analytical purposes, we are interested in the **amount ABSORBED** by the sample and so we want to eliminate reflection and scattering.

This is done by:

 taking I0 as the intensity of the light passing through a cell when filled with a **blank solution** (everything except substance being measured)

taking I as the intensity passing through the cell when filled with the sample

By **eyeeyuu**

cheatography.com/eyeeyuu/

Not published yet. Last updated 17th August, 2022. Page 1 of 4.

Calculating transmittance

Percentage transmittance =
$$\frac{I}{I_{c}} \times 100$$

Equations

						RL .	• e	÷.		τ												
0 8 - KS		→ ;	nicu	ntra	ca vic	in	na:	in	9/1	with	уа тюу	nen	1 (8	s in		1 di	. ;	ngrn	n 10	pain	Fixed	
0 8 - KS																		ĺ.				
			nicu ict → a:			K* 61		(<u>I</u>)	in			c.	e-)	In	L	ms:	uatio	e ea	111	nine	comp	
			n.		GL.	K").	$\left(\frac{I_0}{I}\right)$	log		· 01	e- *		Ţ	т :							
		<u>Kⁿ</u>		L		1.103		1						10								
		2.50										A)	nce		AND	,	(분)	109	tini	auani	THE	
1115 100	-		tuntte						vatio		140											
	ana	Nit	sulosta	ng	cor 10		F 111	м	vati	ancen	tus	170	tiona	opter	y pr	ivesi	is di		01109	0.81	·The	

Beer-Lambert Law

Beer-Lambert law= dependence of absorption on concentration and path length

A=acl

a = absorption coefficient

Represents the absorbance of a solution of unit concentration when measured in a cell of unit path length

Quantitative analysis

Two methods are used to convert the measured absorbance into a concentration:

1. Calibration curve

- 2. Using the Beer-Lambert law with a given 'a' value
- Calibr- 5 or more standards are prepared from a sample of pure
- ation material to be determined. Their absorbance is measured
- curve and their values are used to construct a calibration curve. The sample absorbance is measured and its concentration is read off the curve.

A pure analyte sample must be available

Beer-	Use of A=acl will be needed with additional steps to work
L-	out the dilution factor
ambert	
law	

Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

UV & Fluorescence Spectroscopy Cheat Sheet by eyeeyuu via cheatography.com/159905/cs/33689/

Relationship between path length and concentration

Alange Countries

The value of T (or I) depends on the cell's path length, concentration of absorbing substances and the nature of the substance.

- Increased path length = decreased intensity \rightarrow light passes MORE through solution and interacts MORE with molecule

Wavelength selection

The wavelength for the assay should be chosen so that only the substance of interest absorbs, with no impurities

Analysis of mixtures

If we assume that the components of the mixture do not react with one another, then the absorbance at some wavelength = the sum of absorbance for each component

 $A(\bar{s}) = \sum e_i e_i$

For a mixture of 2 substances with different chromophores, each will have different powers of light absorption at some wavelength(s) in the spectrum.

If measurements are made on the mixture at 1 and 2, then a pair of simultaneous equations can be set up to find the unknown concentrations.

By **eyeeyuu**

cheatography.com/eyeeyuu/

Not published yet. Last updated 17th August, 2022. Page 2 of 4.

Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

FLUORESCENCE SPECTROSCOPY

What is fluorescence?

When molecules absorb UV-visible radiation, they absorbed

energy is converted into kinetic energy due to collisions.

A few excited molecules get rid of excess energy by emitting the absorbed energy as light = **FLUORESCENCE**

absorbed energy as light - I ECONECC

Why use fluorescence?

Fluorescence is more selective than absorption of energy

Is The chances of finding 2 substances which absorb and emit at the same wavelength is LESS than finding 2 substances that absorb at the same wavelength

Not all substances fluoresce

Advantage: it makes fluorimetry more selective for compounds that fluoresce

Disadvantage: not all compounds fluoresce

It's more selective than absorption spectrophotometry

Process of fluorescence

- The emitted radiation is of lower energy than the absorbed radiation

- Molecules in the ground state absorb light and are excited to a vibrational level in the 1st excited state

- Excess vibration is then lost by collisions with other molecules until they are in the V=0 level of the 1st excited state

- The molecules get rid of the remaining energy by emitting it as radiation and dropping to a vibrational level in the ground state

UV & Fluorescence Spectroscopy Cheat Sheet by eyeeyuu via cheatography.com/159905/cs/33689/

Types of fluorescence

1.	When the product molecules are left in an excited state,
Chemi	light is emitted when the molecules return to the ground
lumine-	state
scence	
2. Bio-lu-	Biochemical reactions that produce light
min-	
escence	

Relationship between structure and fluorescence

e.g. Fluorescein \rightarrow fluorescent and rigid structure (prevents loss of energy)

e.g. Phenolphthalein \rightarrow non-fluorescent and non-rigid structure (can twist which converts its absorbed energy into rotational and vibrational energy)

Fluorescence enhancers and inhibitors	
Fluorescence enhancers	Fluorescence inhibitors
OH, OCH3, NH2, NHR, NR2	COOH, NO2, NO, F, CI,
	Br, I
electrons	

 $I = I_o \ 10^{-ccl}$ $F \propto (I_o - I)$

More energy absorbed = more energy emitted

Intensity of fluorescence is PROPORTIONAL to amount of light absorbed

Relationship between I0 and I given by the Beer-Lambert law

- Intensity of emitted radiation is directly proportional to conc
- Fluorescence is directly proportional to intensity of excitation state
- brighter lamp = greater fluorescence
- Fluorescence depends on molar absorption coefficient (E)
- stronger absorbance = greater fluorescence

Fluorescence intensity vs. concentration

At high concentrations, the fluorescence emission becomes concentrated near the **sides of the sample cell** to which the exciting radiation enters.

As the exciting radiation passes through the sample, its intensity falls and the fluorescence produced also decreases.

Under these conditions, the equation for fluorescence intensity no longer holds (as Ecl is no longer small

Experimental measurement of fluorescence

1. Light source

- As intense as possible at wavelength of max absorption
- Continuous source
- Wavelength region of 200-500nm

2. Excitor and detector monochromator

- Used to select excitation/emission wavelengths
- Low diminishing and high light gathering powers
- Filters can be used but are less versatile

3. Sample cell

- Usually silica
- 1x1cm
- 4 clear, optically worked surfaces

4. Detector

- Must be sensitive as possible (varies)
- Photomultiplier tube

By **eyeeyuu** cheatography.com/eyeeyuu/ Not published yet. Last updated 17th August, 2022. Page 3 of 4. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

UV & Fluorescence Spectroscopy Cheat Sheet by eyeeyuu via cheatography.com/159905/cs/33689/

Factors affecting fluorescence measurements					
1. Lower limit of detection	Lowest concentration of substance that can be determined				
2. Fluore- scent impurities	Usually from the reagents or from the cell Ensure the cell is clean and is always placed in the same way (as the 4 sides have different background intensities)				
3. Photod- ecompo- sition	The sample can undergo decomposition due to the high intensity of the exciting radiation samples, and standards should NOT be exposed to the radiation longer than necessary				
4. Quenching	Substance fluorescence is affected more by its enviro- nment then the absorption of the sample Quenching = when fluorescence is decreased by the presence of another sample				

By eyeeyuu

cheatography.com/eyeeyuu/

Not published yet. Last updated 17th August, 2022. Page 4 of 4.

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com