\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{eyeeyuu} \pdfinfo{ /Title (separation-and-chromatography.pdf) /Creator (Cheatography) /Author (eyeeyuu) /Subject (Separation \& Chromatography Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{73BEFF} \definecolor{LightBackground}{HTML}{EDF6FF} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Separation \& Chromatography Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{eyeeyuu} via \textcolor{DarkBackground}{\uline{cheatography.com/159905/cs/33670/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}eyeeyuu \\ \uline{cheatography.com/eyeeyuu} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 15th August, 2022.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{2} \begin{tabularx}{8.4cm}{x{2.56 cm} x{5.44 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Separation}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Pure substances}} & Contain only ONE thing - have fixed melting and boiling points \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{Mixtures}} & Contain MORE THAN ONE thing, do not have exact properties, formed by a physical change so they can be easily separated \tn % Row Count 8 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.584 cm} x{2.508 cm} x{2.508 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{Purification as part of drug synthesis}} \tn % Row 0 \SetRowColor{LightBackground} Synthesis & Purification & \seqsplit{Characterisation} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Weigh up starting materials \{\{nl\}\} Set up a reaction \{\{nl\}\} Monitor reaction \{\{nl\}\} Work up reaction to start purification & Extraction \{\{nl\}\} \seqsplit{Recrystallisation} \{\{nl\}\} Distillation \{\{nl\}\} \seqsplit{Chromatography} \{\{nl\}\} Solid-phase extraction & NMR \{\{nl\}\} IR \{\{nl\}\} MS \{\{nl\}\} RF \{\{nl\}\} Melting point \tn % Row Count 12 (+ 10) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.64 cm} x{5.36 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Separation techniques}} \tn % Row 0 \SetRowColor{LightBackground} 1. Distillation & Used to separate the components of a LIQUID mixture by vapourising, condensing vapours and then collecting the liquid condensate. \{\{nl\}\} {\bf{Separation is a result of different boiling points}} \tn % Row Count 8 (+ 8) % Row 1 \SetRowColor{white} 2. Filtration & Physically separated solids from liquids \{\{nl\}\} Especially used for insoluble solids in liquids \tn % Row Count 12 (+ 4) % Row 2 \SetRowColor{LightBackground} 3. \seqsplit{Centrifugation} & Uses centrifugal force that spins the samples fast \{\{nl\}\} Separated even fine solid matter form liquids \tn % Row Count 16 (+ 4) % Row 3 \SetRowColor{white} 4. \seqsplit{Recrystallisation} & 1. Dissolve impure crude material in minimum volume of solvent \{\{nl\}\} 2. Filter any insoluble material \{\{nl\}\} 3. Allow solution to cool slowly \{\{nl\}\} 4. Crystals will form \tn % Row Count 23 (+ 7) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Polarity}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Definition of solubility} \tn \mymulticolumn{1}{x{8.4cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Ability of a solvent to dissolve in a solute, depending on the nature of the forces acting between the solute and solvent \{\{nl\}\} - {\bf{LIKE DISSOLVES LIKE}}} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{} \tn \mymulticolumn{1}{x{8.4cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}e.g. {\bf{Ionic}} compounds are more soluble in {\bf{polar}} solvents \{\{nl\}\} {\bf{Covalent}} compounds are more soluble in {\bf{non-polar}} solvents} \tn % Row Count 8 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Solvent mixtures}} \tn \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Immiscible: if the mixtures are too different, they will NOT mix, and will form separate layers or 'phases' \{\{nl\}\} \{\{nl\}\} Partially miscible: mixtures are not too different but not too similar, they may mix at determinate proportions depending on the compositions \{\{nl\}\}\{\{nl\}\} Miscible: if they are similar, they mix in EVERY proportion, forming one layer or 'phase'% Row Count 8 (+ 8) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Liquid-liquid Separation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{What is liquid-liquid separation?} \tn \mymulticolumn{1}{x{8.4cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}A method in which 2 molecules initially present in one sample can be separated by giving them the choice of different immiscible solvents} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{- Very common when isolating or purifying a product \{\{nl\}\} - Can be used to extract natural products \{\{nl\}\} - Normally done in workup stage after a reaction \{\{nl\}\}} \tn % Row Count 8 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Criteria of organic solvent for liquid-liquid extraction} \tn \mymulticolumn{1}{x{8.4cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}SHOULD readily dissolve the substance to be extracted \{\{nl\}\} SHOULD NOT react with the substance to be extracted \{\{nl\}\} SHOULD NOT react with or be miscible with water (usual second solvent) \{\{nl\}\} SHOULD have a low boiling point so it can be easily removed from the products} \tn % Row Count 16 (+ 8) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Common extraction solvents are dichloromethane or ethyl acetate} \tn % Row Count 18 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Chromatography}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{What is chromatography?} \tn \mymulticolumn{1}{x{8.4cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Physical method of separation where the components to be separated are distributed between 2 phases: the stationary and mobile phase} \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Common types: \newline - TLC (thin layer) \newline - Column \newline - HPLC (high performance liquid) \newline - GC (gas) \newline - SEC (size exclusion) \newline - Ion exchange \newline - Chiral} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.32 cm} x{5.68 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Chromatography - definitions}} \tn % Row 0 \SetRowColor{LightBackground} Analyte & Substance being separated (or analysed) \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Mobile phase & Phase that moves in a definite direction - consists of sample being separated and the solvent that moves the sample through the column \tn % Row Count 7 (+ 5) % Row 2 \SetRowColor{LightBackground} Stationary phase & The substance fixed in place for the chromatography procedure \tn % Row Count 10 (+ 3) % Row 3 \SetRowColor{white} Eluent & Solvent {\bf{entering}} column \tn % Row Count 11 (+ 1) % Row 4 \SetRowColor{LightBackground} Eluate & Solvent {\bf{leaving}} column \tn % Row Count 12 (+ 1) % Row 5 \SetRowColor{white} Elution & Process of passing liquid through chromatography \tn % Row Count 14 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.68 cm} x{4.32 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{DIFFERENT METHODS \& RETENTION OF ANALYTES}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{1. Adsorption chromatography}} & Separation is based on differences between the {\bf{adsorption affinities}} of the sample analytes for the surface of a solid-stationary phase \{\{nl\}\} Based on {\bf{non-colavent}} interactions \{\{nl\}\} {\bf{Used for organic molecules}} \tn % Row Count 11 (+ 11) % Row 1 \SetRowColor{white} {\bf{2. Partition chromatography}} & Separation based on differences between the {\bf{solubility}} of the sample analytes in the mobile and stationary phases → stationary phase = immobilised liquid \{\{nl\}\} Based on {\bf{non-covalent}} interactions \{\{nl\}\} {\bf{Used for organic polar molecules}} \tn % Row Count 23 (+ 12) % Row 2 \SetRowColor{LightBackground} {\bf{3. Exclusion chromatography}} & Separation based on {\bf{exclusion effects}} e.g. differences in size and shape \{\{nl\}\} {\bf{used for proteins and nucleic acids}} \tn % Row Count 29 (+ 6) % Row 3 \SetRowColor{white} {\bf{4. Gel electrophoresis}} & Specialised example of size-exclusion chromatography which uses \seqsplit{agarose/polyacrylamide} and passes electricity through \{\{nl\}\} Separates based on {\bf{size and shape}} \{\{nl\}\} {\bf{Used for proteins and nucleic acids}} \{\{nl\}\} Visualised by using UV and stains \tn % Row Count 41 (+ 12) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.68 cm} x{4.32 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{DIFFERENT METHODS \& RETENTION OF ANALYTES (cont)}} \tn % Row 4 \SetRowColor{LightBackground} {\bf{5. Ion exchange chromatography}} & Separation based on {\bf{differences in ion exchange affinities}} → e.g. differences in charge size and type \{\{nl\}\} Based on {\bf{ionic forces}} \{\{nl\}\} {\bf{Used for cations, anions, proteins, peptides, amino acids and nucleic acids}} \{\{nl\}\} - Cation exchangers = negative stationary phase \{\{nl\}\} Anion exchangers = positive stationary phase \tn % Row Count 16 (+ 16) % Row 5 \SetRowColor{white} {\bf{6. Thin layer chromatography}} & Separation based on {\bf{Kx values}} \{\{nl\}\} Polar stationary phase = thin layer of silica spread over a glass plate \{\{nl\}\} Stationary phase is placed in the mobile phase \{\{nl\}\} Analyte moves up the plate and components are spread based on their Kx values \{\{nl\}\} {\bf{Lower Rf = compound is MORE polar \{\{nl\}\} Higher Rf = compound is LESS polar \{\{nl\}\} Increased eluent polarity can increase the Rf}} \{\{nl\}\} More polar = stronger interactions in the {\bf{normal}} phase \{\{nl\}\} Less polar = stronger interactions in the {\bf{reverse}} phase \tn % Row Count 41 (+ 25) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{8.4cm}{x{3.68 cm} x{4.32 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{DIFFERENT METHODS \& RETENTION OF ANALYTES (cont)}} \tn % Row 6 \SetRowColor{LightBackground} {\bf{7. Flash column chromatography}} & Used for large amounts of material (5-25mg) when TLC is not effective \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{INSTRUMENTAL CHROMATOGRAPHY}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{1. High performance liquid chromatography}} & Analytical use: identiry multiple analytes in complex mixtures \{\{nl\}\} Preparative use: purification \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} {\bf{2. Gas chromatography}} & Separated by their {\bf{volatility}} \{\{nl\}\} Forces the analyte through a column of the stationary phase by the gas mobile phase at a high pressure and temperature \tn % Row Count 13 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{2.584 cm} x{2.508 cm} x{2.508 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{8.4cm}}{\bf\textcolor{white}{Quantitative analysis}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Single point calibration}} & {\bf{Multiple point calibration}} & {\bf{Internal standard}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} 1. A solution containing a known \seqsplit{concentration} of the compound to be measured in the sample is injected → relation \seqsplit{concentration} obtained =AUC & 1. Several solutions containing different \seqsplit{concentrations} of compound to be measured are injected → AUC obtained & 1. One solution containing a known \seqsplit{concentration} of the compound to be measured AND a known \seqsplit{concentration} of internal standards are injected to find a Response factor \tn % Row Count 16 (+ 13) % Row 2 \SetRowColor{LightBackground} 2. The sample with unknown \seqsplit{concentration} is injected → new AUC is compared with previous to find \seqsplit{concentration} in the sample & 2. The sample with unknown \seqsplit{concentration} is injected → new AUC is compared with previous to find \seqsplit{concentration} in the sample & 2. The sample and the same known \seqsplit{concentration} of internal standard are injected to find the AUC and Response factor \tn % Row Count 26 (+ 10) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Separation in pharmacy}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{Drugs in the clinic must be pure:}} \{\{nl\}\} 1. Impurities can be harmful and cause side effects \{\{nl\}\} 2. Impurities can alter the ability to formulate a drug correctly \{\{nl\}\} 3. Impurities can also affect the stability and shelf-life of the drug} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Drugs in development MUST be pure:}} \{\{nl\}\} This is to ensure that it is the drug that brings about a therapeutic effect and not any impurities \{\{nl\}\} - Before any new compound is tested, it is purified and characterised} \tn % Row Count 10 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Separation is also part of the quality control and monitoring process} \tn % Row Count 12 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.92 cm} x{4.08 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Importance of ionisation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{Some functional groups can be charged, and this depends on: \{\{nl\}\} - whether the molecule is an acid or a base \{\{nl\}\} - the pH of the molecule} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{{\bf{Physiological pH = 7.4}} \{\{nl\}\} we need to know what groups are charged at this pH as it will help us determine: \{\{nl\}\} - types of drug-target binding interactions \{\{nl\}\} - solubility (uptake and distribution) \{\{nl\}\} - potential salt forms} \tn % Row Count 8 (+ 5) % Row 2 \SetRowColor{LightBackground} {\bf{e.g.1 - Carboxylic acids}} & {\bf{e.g. 2 - Aliphatic amines}} \tn % Row Count 10 (+ 2) % Row 3 \SetRowColor{white} Acids react with water: & Bases react with water: \tn % Row Count 12 (+ 2) % Row 4 \SetRowColor{LightBackground} HA + H2O ⇌ H3O+ + A- & B + H2O ⇌ BH + OH- \tn % Row Count 14 (+ 2) % Row 5 \SetRowColor{white} pKa of carboxylic acids \textasciitilde{} \textless{}5 & pKa of aliphatic amines \textasciitilde{} \textgreater{}8 \tn % Row Count 16 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{These functional groups are almost ALWAYS ionised at physiological pH} \tn % Row Count 18 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{8.4cm}}{pKa \& pH = measures of dissociation \{\{nl\}\} If the pKa = pH, then the functional group is 50\% ionised} \tn % Row Count 20 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{3.04 cm} x{4.96 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Partitioning}} \tn % Row 0 \SetRowColor{LightBackground} Partition & Distribution of a solute between 2 solvents \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} & Compound is present in BOTH phases according to its relative solubility in both \{\{nl\}\} \tn % Row Count 6 (+ 4) % Row 2 \SetRowColor{LightBackground} & Solute distributes itself between the 2 liquids in accordance with its {\bf{partition coefficient}} \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} {\bf{Partition coefficient}} & Ratio of the concentration of the solute in one liquid OVEr the concentration in the other \tn % Row Count 14 (+ 4) % Row 4 \SetRowColor{LightBackground} & Dynamic equilibrium exists between the 2 liquids, temperature dependent \tn % Row Count 17 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Partitioning in pharmacy}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Relative hydrophobic/hydrophilic properties of a drug are crucial as it influences: \{\{nl\}\} - solubility \{\{nl\}\} - adsorption \{\{nl\}\} - distribution \{\{nl\}\} - metabolism \{\{nl\}\} - excretion} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{{\bf{Drug too polar?}} It will not cross the cell membranes across the gut wall \{\{nl\}\} {\bf{Drug too lipophilic?}} Drug will be poorly absorbed, so will likely be taken up into the fat tissue and not circulated} \tn % Row Count 9 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{LogP}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/eyeeyuu_1660577908_Screenshot 2022-08-15 at 16.33.15.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{LogP: used as a measure of hydrophobicity of a drug \newline \newline Hydrophobic/hydrophilic character is measured using partition \newline - Hydrophobic molecules prefer the {\bf{octanol layer}} → high P \newline - Hydrophilic molecules prefer the {\bf{water layer}} → low P \newline \newline LogP measures only unionised forms of the drug between octanol and water \newline LogD is sued to represent relative distributions of all species, charged or uncharged} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Distribution Coefficient (Kx)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{8.4cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/eyeeyuu_1660594272_Screenshot 2022-08-15 at 21.08.56.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{C(stat) = conc of X in {\bf{stationary}} phase \newline C(mob) = conc of X in {\bf{mobile}} phase \newline \newline Each compound will have a different Kx \newline Chromatographic separations can be altered by changing the nature of the stationary and/or mobile phase(s)} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Solid-phase extraction}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Used in sample preparation to remove matrix interferences such as proteins} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Concentrates sample of interest} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Solid phase in SPE is similar to the stationary phase used in chromatography} \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Active substances can be retained or unretained} \tn % Row Count 6 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{{\bf{SPE vs. Chromatography}} \newline - Column is much smaller for SPE \newline - Specialised columns are more common \newline - Analytes are typically strongly retained on the SPE column, then impurities are washed away \newline ↳ In chromatography, both the analyte and impurities are passed through at different rates \newline SPE is used for sample preparation, then chromatographic methods follow} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{x{4 cm} x{4 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{8.4cm}}{\bf\textcolor{white}{Stationary phases}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Normal phase}} & {\bf{Reverse phase}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Stationary phase = polar \{\{nl\}\} Mobile phase = non-polar & Stationary phase = non-polar \{\{nl\}\} Mobile phase = polar \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} Components elute in order of {\bf{increasing}} polarity & Components elute in order of {\bf{decreasing}} polarity \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} Used in TLC and flash column & Used in HPLC \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} {\bf{More}} polar compounds are retained stronger \{\{nl\}\} More polar solvents increase elution & {\bf{Less}} polar compounds are retained stronger \{\{nl\}\} Less polar compounds increase elution (e.g. methanol, ethanol) \tn % Row Count 15 (+ 6) % Row 5 \SetRowColor{white} Solvents = the complete range but rarely greater than 20\% for very polar solvents & Solvents = very polar solvents (e.g. water, methanol) \tn % Row Count 20 (+ 5) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{8.4cm}}{A strong solvent for the normal phase is a weak solvent for the stationary phase} \tn % Row Count 22 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Component retention}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{For TLC, retention is expressed in terms of Rf \{\{nl\}\} For column, retention is expressed in terms of column volumes (CV) \{\{nl\}\} {\bf{The relationship between Rf and CV are reciprocal}}} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Lower Rf = greater CV → Low RF if preferred as it increases analyte contact time and improves chances of component separation or resolution} \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{To separate adjacent compounds, a large ∆CV is desired} \tn % Row Count 9 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{8.4cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{8.4cm}}{\bf\textcolor{white}{Order of elution}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{TLC and HPLC depend on {\bf{polarity}} \{\{nl\}\} - Normal phase: polar retained more, non-polar elutes first \{\{nl\}\} - Reverse phase: non-polar retained more, polar elites first} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Gas chromatography depends on {\bf{volatility or molecular weight}} \{\{nl\}\} - Highly volatile or low MW elutes first} \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{8.4cm}}{Size exclusion depends on {\bf{molecular size}} \{\{nl\}\} - Low size retained more, largest size elutes first} \tn % Row Count 10 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{8.4cm}}{Ion exchange depends on {\bf{charge}} \{\{nl\}\} - Complementary charges are retained more} \tn % Row Count 12 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}