

ECGR 3112 Final Cheat Sheet

by eujc21 via cheatography.com/18924/cs/2025/

Signal Flow

Signal Flow

 $M \rightarrow$ Forward Path

 $M \to \text{Forward Path}$ $L \to \text{Loops}$ $\triangle_1 \to 1 - ((\text{Loops left after} M_1 \text{ removed})$ $\triangle \to 1 - (\text{sum of loop Gains} + \text{sum of 2 non-touching})$ $\text{Gain} = \frac{C(s)}{s} = \frac{M_1 \triangle_1 + M_2 \triangle_2 + \dots}{\Delta}$ Every Deriviation Has An Initial Condition

$$\frac{Y(s)}{U(s)} = \frac{b_n s^n + b_{n-1} s^{n-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$
 (3.12)

	Manipulation	Original Block Diagram	Equivalent Block Diagram	Equation
1	Combining Blocks in Cascade	$X \longrightarrow G_1 \longrightarrow G_2 \longrightarrow Y$	$X \longrightarrow \boxed{G_1G_2} \longrightarrow Y$	$Y = (G_1G_2)X$
2	Combining Blocks in Parallel; or Eliminating a Forward Loop	$X \xrightarrow{G_i} X \xrightarrow{Y} Y$	$X \longrightarrow G_1 \pm G_2 \longrightarrow Y$	$Y = (G_1 \pm G_2)X$
3	Moving a pickoff point behind a block	$u \longrightarrow G \longrightarrow y$	$\begin{array}{c} u \longrightarrow G \longrightarrow y \\ u \longleftarrow 1/G \end{array}$	y = Gu $u = \frac{1}{G}y$
4	Moving a pickoff point ahead of a block	$u \longrightarrow G \longrightarrow y$	$u \longrightarrow G \longrightarrow y$ $y \longleftarrow G \longrightarrow y$	y = Gu
5	Moving a summing point behind a block	$u_1 \longrightarrow G \longrightarrow g$ $u_2 \longrightarrow G \longrightarrow g$	$u_1 \longrightarrow G \longrightarrow y$ $u_2 \longrightarrow G$	$e_2 = G(u_1 - u_2)$
6	Moving a summing point ahead of a block	$u_1 \longrightarrow G \longrightarrow y$ u_2	$u_1 \longrightarrow \bigcirc \bigcirc \longrightarrow y$ $1/G \longrightarrow u_2$	$y = Gu_1 - u_2$
			$U^{G_1} \bullet U^{G_2} \bullet G_1 \bullet \bigotimes \bullet y$	$y = (G_1 - G_2)$

Second Order System

Second Order System

 ${\rm Underdamped:} 0 < \zeta < 1$

Critically Damped: $\zeta=1 o \textit{Poles at same point}$

Under Damped: $\zeta=0$

Damped: $\zeta > 1$

Settling Time: $t_s = \frac{3}{\zeta \omega_n}$

$$t_{\text{max}} = \frac{\zeta \omega_n}{\omega_n \sqrt{1 - \zeta^2}}$$

$$C_{\max}(t) = 1 + e^{\frac{-\pi\zeta}{\sqrt{1-\eta^2}}}$$

%Overshoot = $100e^{\frac{-\pi\zeta}{\sqrt{1-\eta^2}}}$

Rising Time:

$$t_r = \frac{1 + 1.1\zeta + 1.4\zeta^2}{\omega_n} \sec$$

Delay Time:

$$t_{\perp} = \frac{1 + 0.6\zeta + 0.15\zeta^2}{1 + 0.6\zeta + 0.15\zeta^2}$$
 sec

 $t_d = \frac{1+0.6\zeta+0.15\zeta^2}{\omega_n} \sec$ # of Oscillations = $\frac{\omega_d t_s}{2\pi}$

$$\omega_d = \omega_n \sqrt{1 - \zeta^2}$$

Critically Damped:

 $\frac{\omega_0}{s^2+2\omega_n+\omega_n^2}$

By eujc21

cheatography.com/eujc21/

Published 5th May, 2014. Last updated 5th May, 2014. Page 1 of 1.

Measure your website readability! https://readability-score.com

Sponsored by Readability-Score.com