Bash scripting Cheat Sheet
Cheatography ash scripting Cheat Shee

by eugvol via cheatography.com/198523/cs/42009/

* Any number of characters inc. none
? Matches single character
[abc] Matches any one of enclosed characters

[a-c] Matches any character in the range

?(pattern-list) Extended: matches zero or one occurrence of the given patterns
*(pattern-list) Extended: matches zero or more occurrences of the given patterns
+(pattern-list) Extended: matches one or more occurrences of the given patterns
@(pattern-list) Extended: matches one of the given patterns

I(pattern-list) Extended: matches anything except one of the given patterns

*txt test1.txt

?.txt a.txt, not ab.txt

[ab].txt a.txt, b.txt, not c.txt

[a-c].txt a.txt, b.txt, c.txt, not d.txt

?(alb).txt a.txt, b.txt, .txt

*(alb|c).txt a.txt, aa.txt, abac.txt, .txt

+(alb|c).txt a.txt, ab.txt, ba.txt, aaabbbccc.txt, etc
@(alblc).txt a.txt, b.txt, or c.txt

I(alblc).txt any .txt files except a.txt, b.txt, c.txt

shopt -s extglob turns on extended globs.

shopt -s nullglob return no output if no matches, otherwise returns the glob pattern.
shopt -s nocaseglob makes globing case-insensitive.

shopt -s dotglob includes filenames starting with a dot (hidden files) in glob patterns.

For loop

Basic
for i in 1 2 3 4 5
do
echo " Number $i"

done

Over files
for file in /path/to/directory/*
do

echo " Pro cessing $file"

done

C-style syntax

for ((1 = 1; 1 <= 5; i++))
do
echo " Number $i"

done

Over range with break

for 1 in {1..10}

do
if ["™ $i" -eq 5]1; the
n
break
fi
echo " Number $i"
done

Over command output

for user in $(cat /etc/p asswd | cut -d ':
do

echo " User: Suser"
done

Over range with step
for i in {0..10..2}
do

echo " Number $i"

done

break and continue can be used

Special characters and variables

/' Root directory $HOME
Current directory $PWD
~ Current user directory $PATH

The current user's home directory

The current working directory

A list of directories separated by colons (:) where the system looks for executable files

By eugvol
cheatography.com/eugvol/

Not published yet.
Last updated 16th January, 2024.
Page 1 of 6.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/eugvol/
http://www.cheatography.com/eugvol/cheat-sheets/bash-scripting
http://www.cheatography.com/eugvol/
https://readable.com

Bash scripting Cheat Sheet
by eugvol via cheatography.com/198523/cs/42009/

Cheatography

Special characters and variables (cont)

~username Directory of a user with username SUSER The username of the user running the script
Parent directory $HOSTNAME The hostname of the machine the script is running on
$0 The name of the Bash script $RANDOM Returns a different random number each time is it referred to
$1-%9 The first 9 arguments to the Bash $SECONDS Number of seconds since the shell was started. Can be used to measure
script elapsed time of a script
$# Number of arguments passed to $OLDPWD Previous directory
Bash script
@ All the arguments supplied to the $LINENO Current line number in a script or shell. Used for debugging
Bash script
$? The exit status of the most recently $SHELL Path to the user's default shell

run process

$$ The process ID of the current script $UID User unique ID

Arithmetics

let writes the result to a variable but doesn't print it. Used only for integers.

let b=2+5 let b=2*5 let c=$%a/$b

let c=$%a%$b let c=$a**$b let Ya =5 + 2”7

let “a=5+2" let “c = $a * $b” let "c = (2 + 3) * 4"
let at++ let lo== let c+=1

expr returns the result and prints it. Spaces are important. Used only for integers.

expr 10 + 5 expr 3 * 2 expr 10 / 2
expr Sa - S$b expr 11 % 5 a=$ (expr 11 % 5)
$(()) can also be used for arithmetics with integers only.

a=$((3+4)) b=$(($ a-$b)) c=$ ((a*b))
((b=++a)) ((b=--a)) c=$ ((b +=3))

bc is used for more complex calculations. It can deal with decimals as well.

a=$(echo "5 + 3" | bc) b=$(echo " 10.5 -2.3" | bc -1) c=$(echo " sqr t(2 5)" | bc -1)
d=$ (echo "2 ~ 3" | bc -1) rounde d v alu e=$ (echo " sca le=2; 10/3" | bc)
Shebang Integers test
#!/bin/bash Within [] Within [[1]
#!/usr/bin/env bash -eq ==
-ne 1=
-gt >
MY STR l=Hello Hello it <
MY STR 2=$ MY STRI Hello -ge .-
MY NUM=45 45 le <=

MY STR 3="Num value is $MY NUM Num value is 45
o Decimals comparison

MY STR 4='Num value is $MY NUM Num value is $MY_NUM

MY PAT H=/etc letc

MY COM MAN D=$(ls $MY_ PATH) result of Is /etc

http://www.cheatography.com/
http://www.cheatography.com/eugvol/
http://www.cheatography.com/eugvol/cheat-sheets/bash-scripting

File tests

returns O if directory

d

- returns O if file

f

- returns O if exists

e

- returns 0O if file isn't empty
s

- returns 0 if file exists and permissions are granted (-w, -x are
r also possible)

Use either test -flag argument or [-flag argument] format.
Use echo $? to get the result in bash cmd

h
-

String tests

[$a = " Hel lo"] returns O if
strings are

equal

!= $b] returns O if
strings are

not equal

[-z Sa] returns O if
$a length is

zero

[-n Sa] returns O if
$a length is

non-zero

returns O if
strings are
equal

= $b 1] returns O if
strings are

not equal

> $b 11 returns O if
$ais
alphabeti-
cally greater

than $b

< $b 11 returns O if
$ais
alphabeti-
cally less

than $b

returns 0 if
SFILENAME
matches

[[" $FI LEN AME " == *.txt]]

glob pattern

[["™ Hello !!"™ =~ returns O if

* 1]

“Hello [[: spa ce:]].
string
matches
regex

pattern

White spaces are important.

decimall=3.14
decima 12=2.71

Use bc to compare decimal numbers

result =$(echo " $de cimall > $decim al2 " | bc -
1)
if [" S$re sul t" -eq 1]; then

echo " $de cimall is greater than $decim -
al2 "
elif [" S$re sul t" -eq 0]; then

echo " $de cimall is equal to $decim al2 "
else

echo " $de cimall is less than $decim -
alz "

Conditional structures

cmd1 || cmd2 run cmd1, if fails run cmd2

cmd1 && cmd2 run cmd1, if ok run cmd2

if [$Sa -gt 5] && [$b -eqg 20]; then
echo "a > 5 AND b=20"
elif [$b -1t 15] || [$c -ge 30]; then
echo " b<15 OR c>=30"
elif ! [$a -eq 10]; then
echo "a!=10"
else
echo "None of the conditions met"
fi
case S$input in
start | START)
echo " Sta rting the process..."
stop| STOP)
echo " Sto pping the process..."
*)
echo " Invalid option: $input"
esac
option s=(" STA RT" "STOP")

select opt in "$options[@]"

do
case Sopt in
START)
echo " Sta rting the process..."
STOP)
echo " Sto pping the process..."
I
*)
echo " Invalid option: $input"
esac
done

Associative arrays

Declare an declare -A fruits
associative array

Adding/ap- fruits[apple]="red"
pending anitem fruits[bananal="yellow"

Reading anitem echo "The apple is ${frui ts[app le
] }"

By eugvol Not published yet. Sponsored by Readable.com
cheatography.com/eugvol/ Last updated 16th January, 2024. Measure your website readability!
Page 3 of 6. https://readable.com

http://www.cheatography.com/eugvol/
https://readable.com

Cheatography

Associative arrays (cont)

Changing an item fruits [ap ple]="g ree n"
value
Removing an item unset fruits [ba nana]
Looping through for key in " ${! fru its [@] }";
keys do
echo "Skey"
done
Looping through for value in " ${f rui ts[@]} ";
values do
echo "$value"
done
Looping through for key in " ${! fru its [@] }";
keys and values do

echo " Skey: ${fruits[S$Skey]}

"
done

Length of an associ- echo ${#fru its[@]}

ative array

While/Until loops

While Until

counter=1 counter=1

while [$counter -le 10] until [S$counter -gt 10]
do do

echo Scounter echo Scounter
((counter++)) ((counter++))

done done

While with reading from a file

while IFS= read -r line; do
echo "$line"

done < filena me.txt

Exporting env variables

printenv Print list of all env variables
export VAR="Hello Create env variable (for current session
World" only)

echo 'export NEW_VA-
R="Hello World" >>
~/.bashrc

Create env variable for future sessions

source ~/.bashrc Reload the shell startup file (required
after changing the file with prev.

command)

export PATH=$PATH:n-
ewvalue

Appending a value (for current session
only)

unset VAR Remove env variable

Bash scripting Cheat Sheet
by eugvol via cheatography.com/198523/cs/42009/

Explicit declare -a my array

declar-

ation

Implicit my arr ay= (el ementl element2 element3)
creation

Read a echo ${my a rra y[0]}

single

element

Read all echo ${my a rra y[@]}

elements

Changing my arr ay[1]= new el ement

an

element

Appending my arr ay+ =(e lem ent4)

an

element

Removing unset my arr ayl[1]

an

element

Length of echo ${#my arr ay[@]}

an array

Looping for element in " ${m y a rra y[@]}"; do
through an echo $element

array done

Sparce declare -a sparse_array

array sparse array[3]="Third Element"

sparse_array[7]="Seventh Element"
for index in " ${!

P

echo " Index $index: ${sparse array[$i

spa rse _ar ray [@]

done

ECHO and READ

http://www.cheatography.com/
http://www.cheatography.com/eugvol/
http://www.cheatography.com/eugvol/cheat-sheets/bash-scripting

By eugvol
cheatography.com/eugvol/

echo " Hello,

echo -n "This

echo " single

echo -e "This

echo -E "This

e xt."

read var

World! "

is a "

line."

is a\ttab \ts epa rat ed \tt

is al\ttab \ts epa rat ed \tt

read varl var2 var3

read -a fruits

read -p " Enter your name: " name

read -sp “Password:

read -n 3 val

read -t 5 val

w

password

Hello,
World!
Thisis a
single
line.

This is a
tab
separated
text.

This is
a\ttab\ts-
eparated-
\ttext.

reading
into a
variable

reading
into
several

variables

reading
into array
(white-
space is
the default
delimiter)

reading
with
prompt
reading
with silent
input and
prompt
reading
with a
limited
number of
characters

reading
with 5s
timeout

Not published yet.
Last updated 16th January, 2024.
Page 4 of 6.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/eugvol/
https://readable.com

	Bash scripting Cheat Sheet - Page 1
	Globs
	For loop
	Special characters and variables

	Bash scripting Cheat Sheet - Page 2
	Arithm­etics
	Shebang
	Integers test
	Variables
	Decimals comparison
	File tests
	String tests
	Condit­ional structures
	Associ­ative arrays

	Bash scripting Cheat Sheet - Page 4
	Arrays
	While/­Until loops
	ECHO and READ
	Exporting env variables

