Cheatography

Stats Midterm Cheat Sheet by enrlr5npnw via cheatography.com/195263/cs/40864/

Normal Distribution

Parameters	$\mu =$ population mean $\alpha =$ population standard deviation		
PDF	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$		
Domain	$-\infty < x < +\infty$		
Mean	μ		
Std. Dev.	σ		
Shape	Symmetric, mesokurtic, and bell-shaped.		
PDF in Excel*	=NORM.DIST($x, \mu, \sigma, 0$)		
CDF in Excel*	=NORM.DIST($x, \mu, \sigma, 1$)		
Random data in Excel	=NORM.INV(RAND(), μ , σ)		

Sampling distribution of $\bar{\mathbf{x}}$ is normal for each sample size

Test For	Null Hypothesis (H _o)	Test Statistic	Distribution	Use When
Population mean (µ)	$\mu = \mu_{\sigma}$	$\frac{(\bar{x}-\mu_o)}{\sigma/\sqrt{n}}$	Ζ	Normal distribution or $n > 30$; σ known
Population mean (µ)	$\mu=\mu_{\mathfrak{g}}$	$\frac{(\bar{x}-\mu_o)}{s/\sqrt{n}}$	t _{n-1}	n < 30, and/or σ unknown
Population proportion (<i>p</i>)	$p = p_{g}$	$\frac{\hat{p} - p_o}{\sqrt{\frac{p_o (1 - p_o)}{n}}}$	Ζ	$n\hat{p}, n(1-\hat{p}) \ge 10$
Difference of two means $(\mu_1 - \mu_2)$	$\mu_1 - \mu_2 = 0$	$\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-0}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}$	Ζ	Both normal distributions, or $n_1, n_2 \ge 30;$ σ_1, σ_2 known
Difference of two means ($\mu_1 - \mu_2$)	$\mu_{1}-\mu_{2}=0$	$\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-0}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}$	t distribution with $df =$ the smaller of n_1-1 and n_2-1	$n_{\rm i}, n_{\rm 2}$ < 30; and/or $\sigma_{\rm i}, \sigma_{\rm 2}$ unknow
Mean difference μ_d (paired data)	$\mu_d = 0$	$\frac{\left(\overline{d}-\mu_{d}\right)}{s_{d}/\sqrt{n}}$	t _{n-1}	n < 30 pairs of data and/or $\sigma_{_d}$ unknown
Difference of two proportions $(p_1 - p_2)$	$p_1 - p_2 = 0$	$\frac{(\hat{\rho}_1 - \hat{\rho}_2) - 0}{\sqrt{\hat{\rho}(1 - \hat{\rho})\left(\frac{1}{n_1} + \frac{1}{n_s}\right)}}$	Ζ	$n\hat{p}, n(1-\hat{p}) \ge 10$ for each group

By enrlr5npnw

cheatography.com/enrlr5npnw/

Not published yet. Last updated 17th October, 2023. Page 1 of 1. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com