
# Cheatography

# Trigonometry Year 10 Cheat Sheet by enfoiree (enfoiree\_) via cheatography.com/166759/cs/34910/

#### **Trigonometric Functions**

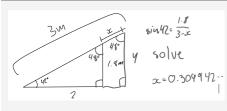


\*adjacent and opposite labels can change depending on the angle being found

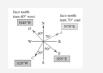
# Pythagoras Theorem

| $c^2 = a^2 + b^2$ | $c = \sqrt{a^2 + b^2}$ |
|-------------------|------------------------|
| $a^2 = c^2 - b^2$ | $a = \sqrt{c^2} - b^2$ |
| $b^2 = c^2 - a^2$ | $b = \sqrt{c^2} - a^2$ |

c is the hypotenuse whereas a and b can be switched interchangeably


#### Pythagoras in 3 Dimensions

The Pythagorean Theorem can also be used in three dimensions to find the diagonal length of a rectangular prism


$$d = \sqrt{x^2 + y^2} + z^2$$

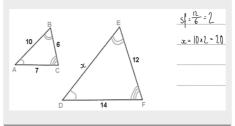
Finding right angles in general shapes





#### **True Bearings**




Similarity Test for Similar Triangles

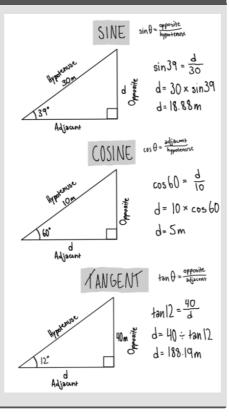
# Scale Factor

Scale factor is the ratio between the scale of a given original object and a new object, which is its representation but of a different size (bigger or smaller).

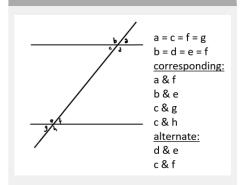
sf = larger figure dimensions ÷ smaller figure dimensions

### Example of Scale Factor

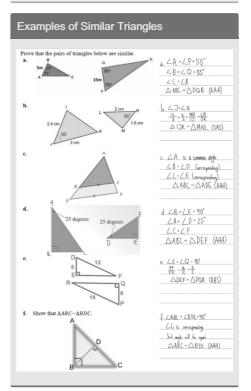



### Example of Inverse




#### **Conventional Bearings**




## Examples of Trigonometric functions



#### Examples of Angles



Corresponding: Equal the same Alternate: Equals 180



| AAA Rule          | $\angle A = \angle D = 65^{\circ}$                     |
|-------------------|--------------------------------------------------------|
| В                 | $\angle B = \angle E = 75^{\circ}$                     |
| 75°               | $\angle C = \angle F = 40^{\circ}$                     |
|                   | $\triangle ABC \sim \triangle DEF$                     |
| A 65° 40° C D F   | by the AAA Rule.                                       |
| SSS Rule          | $\frac{AB}{DE} = \frac{10}{5} = 2$                     |
| r.                | BC 16                                                  |
| B                 | $\frac{BC}{EF} = \frac{16}{8} = 2$                     |
| 10cm 16cm 5cm 8cm | $\frac{AC}{DF} = \frac{12}{6} = 2$                     |
|                   | DF = 6 = 2                                             |
| D 6cm F           | $\triangle ABC \sim \triangle DEF$                     |
| A 12cm C          | $\triangle ABC \sim \triangle DEF$<br>by the SSS Rule. |
| 1000              | ty at 000 hait.                                        |
| SAS Rule          | $\frac{BC}{EF} = \frac{16}{8} = 2$                     |
| EA.               | $\angle C = \angle F = 40^{\circ}$                     |
| B Bcm             |                                                        |
| 16cm              | $\frac{AC}{DF} = \frac{12}{6} = 2$                     |
| 40*               |                                                        |
| 40° 6cm F         | $\triangle ABC \sim \triangle DEF$                     |
| A 12cm C          | by the SAS Rule.                                       |
|                   |                                                        |
| RHS Rule          | $\angle A = \angle D = 90^{\circ}$                     |
|                   | $\frac{BC}{EE} = \frac{10}{5} = 2$                     |
| C F               | 11 0                                                   |
| 10mm 5mm          | $\frac{AB}{DE} = \frac{8}{4} = 2$                      |
|                   |                                                        |
| D 4mm E           | $\triangle ABC \sim \triangle DEF$                     |
| A 8mm B           | by the RHS Rule.                                       |
|                   |                                                        |
| 01111             |                                                        |



# By enfoiree (enfoiree\_)

cheatography.com/enfoiree/

Published 27th October, 2022. Last updated 28th October, 2022. Page 1 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com