

Advanced Functions Trig Cheat Sheet by emilyaltmann via cheatography.com/81523/cs/21005/

Special Triangles

300	45°	60°	90°
<u>π</u>	<u>π</u>	π_	$\frac{\pi}{2}$
6	4	3	2
1	√2	√3	
2	2	2	1
√3	√2	1	
2	2	2	0
1/8	,	√ 3	
	$ \begin{array}{c c} \hline 0 & 30^{\circ} \\ \hline \frac{\pi}{6} \\ \hline \frac{1}{2} \\ \hline \frac{\sqrt{3}}{2} \\ \hline \frac{1}{\sqrt{3}} \end{array} $	$ \begin{array}{c c} \frac{n}{6} & \frac{n}{4} \\ \frac{1}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{3}}{2} & \frac{\sqrt{2}}{2} \end{array} $	$\begin{array}{c cccc} \frac{\pi}{6} & \frac{\pi}{4} & \frac{\pi}{3} \\ \hline \frac{1}{2} & \frac{\sqrt{5}}{2} & \frac{\sqrt{5}}{2} \\ \hline \frac{\sqrt{5}}{2} & \frac{\sqrt{5}}{2} & \frac{1}{2} \\ \hline \end{array}$

Spinning Wheel

|a| radius

k speed of rotation (radians/second)

q height of center

Swinging Pendulum & Fixed Object

|a| distance from q to extreme

2|a| is distance from one extreme to the other

k nothing

q horizontal distance from reference (resting position)

By emilyaltmann

Not published yet.

Last updated 2nd November, 2019.

Page 1 of 1.

Sponsored by **Readable.com**Measure your website readability!

https://readable.com

cheatography.com/emilyaltmann/