Cheatography

Chemistry (9701): 3. Chemical Bonding, AS level Cheat Sheet by Emergybuttonse via cheatography.com/207489/cs/44367/

Definitions

Electronegativity is the ability of an atom to attract a pair of electrons towards itself in a covalent bond

lonic bonding is the electrostatic attraction between oppositely charged ions (positively charged cations and negatively charged anions

Metallic bonding is the electrostatic attraction between positive metal ions and delocalised electrons

Covalent bonding is electrostatic attraction between the nuclei of two atoms and a shared pair of electrons

Bond energy is the energy required to break one mole of a particular covalent bond in the gaseous state

Bond length is the internuclear distance of two covalently bonded atoms

Sigma bond is the covalent bond formed by 'head on' overlap of atomic orbitals

Pi Bond is the covalent bond formed by sideways overlap of atomic orbitals

Dipole-Dipole Forces are intermolecular attractions between molecules which are permanently polarised

Hydrogen Bond is the electrostatic attraction between a hydrogen atom which is bonded to a very electronegative atom and an electronegative atom of a neighbouring molecule

Van Der Waals Forces are intermolecular forces of attraction which arise from temporary dipoles in molecules

By Emergybuttonse

Prop	perties	of w	<i>ate</i>

High melting & boiling points	Water has high melting and boiling points which is caused by the strong intermolecular forces of hydrogen bonding between the molecules
High surface tension	Surface tension is the ability of a liquid surface to resist any external forces. The water molecules at the surface of liquid are bonded to other water molecules through hydrogen bonds These molecules pull downwards on the surface molecules causing the surface them to become compressed and more tightly together at the surface

Properties of water (cont)

Density	In ice the water molecules are		
	packed in a 3D hydrogen-bonded		
	network in a rigid lattice. Each		
	oxygen atom is surrounded by		
	hydrogen atoms. This way of		
	packing the molecules in a solid		
	and the relatively long bond		
	lengths of the hydrogen bonds		
	means that the water molecules		
	are slightly further apart than in		
	the liquid form		

Hydrogen bonding in water, causes it to have anomalous properties such as high melting and boiling points, high surface tension and anomalous density of ice compared to water

Factors influencing electronegativity

Nuclear	Increase in nuclear charge
charge	increases electronegativity
Atomic	Increase in atomic radius
radius	decreases electronegativity
Shielding	Shielding causes decrease
by inner	in electronegativity
shells	

Paulings electronegativity to predict bonds

Paulings electronegativity	Bond
< 1.0	Covalent
1.0 - 2.0	Polar covalent
> 2.0	Ionic

Published 15th September, 2024. Last updated 15th September, 2024. Page 1 of 3.

Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/emergybuttonse/

Cheatography

Chemistry (9701): 3. Chemical Bonding, AS level Cheat Sheet by Emergybuttonse via cheatography.com/207489/cs/44367/

Metallic bonding

In a metal, atoms are packed together in a lattice

Electrostatic attraction increases with:

Increase in positive charge

Decrease in size of metal ions

Increase in number of mobile electrons

σ and π bonds

A pi bond is weaker than a sigma bond because the overlapping of charge clouds is less than in a sigma bond

H₂ has 1 σ bond

C₂H₆ has only σ bonds

 C_2H_4 has 1 σ and 1 π bond

HCN has 1 σ and 2 π bonds

 N_2 has 1 σ and 2 π bonds

VSEPR Theory and Molecular Shapes

Number of electron pairs	Electron pair geometries: 0 Ione pair	1 lone pair	2 lone pairs	3 lone pairs	4 Ione pairs
2	X Linear				
3	x E x	 ×√ ^E ≻x <120*			
	Trigonal planar X	Bent or angular	a 2		
4	×E	×*************************************	х <mark>Е</mark> Х <<109°		
	Tetrahedral	Trigonal pyramid	Bent or angular		
5	120° × × × × × × × × × × × × × × × × × × ×	<120° X X 120° X X I X X X X X X X	× ⊑ × × *	× + + + + + + + + + + + + + + + + + + +	
	Trigonal bipyramid	Sawhorse or seesaw	T-shape	Linear	
6	× 1 × 1 × 1 × 1 × x	<90° ×	90° × 1 ×	× + + >× × <90°	× 180
	Octahedral	Square pyramid	Square planar	T-shape	Linear

Van der Waals' Forces & Dipoles

ld - id	Increasing number of		
forces	electrons (and atomic		
increase	number) in the molecule		
with			
	Increasing the places where		
the molecules come close			
	together		
For small molecules with the same number			
of electrons, pd - pd forces are stronger			

than id - id

Order of bond strength

METALLIC BONDING	STRONGEST
IONIC BONDING	
COVALENT BONDING	
HYDROGEN BONDING	
PERMANENT DIPOLE - PERMANENT DIPOLE FORCES	
INSTANTANEOUS DIPOLE - INDUCED DIPOLE	WEAKEST

Electronegativity relations

		Across a Period
Nuclear charge	Increases	Increases
Shielding	Increases	Reasonably constant
Atomic radius	Increases	Decreases
Electronegativity	Decreases	Increases

Ionic bonding

Formation of sodium chloride (NaCl)

[No electrons are shown in the 'dot-and-cross' diagram of cations – since the valence electrons are transferred completely to the anions.]

Ionic bonds are non-directional, each cation will attract any neighbouring anion and vice versa to form a huge ionic lattice

Covalent bonding dot and cross

Special octets

Hybridisation: sp, sp², sp³

- sp two different bonds(one may be triple bond)
- sp² three different bonds(one may be double bond)
- sp³ four different bonds

Hydrogen bonding

Hydrogen bonding is the strongest form of intermolecular bonding

For hydrogen bonding to take place the following is needed:

A species which has an O or N	A species
(very electronegative) atom	with an -
with an available lone pair of	OH or -
electrons	NH group

For hydrogen bonding to take place, the angle between the -OH/-NH and the hydrogen bond is 180^o

Bond Energy and Bond Length: Reactivity

Shorter bond length generally means higher bond energy, making molecules less reactive

Triple bonds are the shortest and strongest covalent bonds due to the large electron density between the nuclei of the two atoms

Triple bonds are the shortest and strongest covalent bonds due to the large electron density between the nuclei of the two atoms

The reactivity of a covalent bond is greatly influenced by: The bond polarity, the bond strength, the bond type (σ/π)

If the central atom is from Period 2 of the Periodic Table, the total number of electrons surrounding it cannot exceedeight(but can less than eight). If the central atom is from Period 3 and beyond, the total number of electronssurrounding it can exceed eight

By Emergybuttonse

Published 15th September, 2024. Last updated 15th September, 2024. Page 2 of 3. Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/emergybuttonse/