Cheatography

StatiscalThinkingPython Cheat Sheet by elhamsh via cheatography.com/31327/cs/14239/

np.cov(x, returns a 2D array where entries

[0,1] and [1,0] are the covariances. Entry [0,0] is the variance of the data in x, and entry [1,1] is the variance of the data in y. This 2D output array is called the covariance matrix, since it organizes the self- and

Pearson correlation coefficient, also

called the Pearson r, is often easier

to interpret than the covariance. It

is computed using the

np.corrcoef() function. Like

Entries [0,0] and [1,1] are

np.cov(), it takes two arrays as

necessarily equal to 1 (can you think about why?), and the value we are after is entry [0,1].

permutation sampling is a great

Permute the concatenated array

probability distributions

Concatenate the data sets

way to simulate the hypothesis that two variables have identical

arguments and returns a 2D array.

covariance.

numpy (cont)

y)

np.corrco ef()

hypotheses

permutati on

sampling

np.rando

m.permu tation(data)

np.concat

enate((data1, data2))

EDA import seaborn is used to set the

seaborn as sns	plotting	
sns.set()	Set default Seaborn style	
The "square root rule" is a commonly-used rule of thumb for choosing number of bins: choose he number of bins to be the square root of the number of samples.		
Bee swarm plot	Draw a categorical scatterplot with non- overlapping points.	
sns.swarmplot (x='colname1', y='colname2', data=df)	colname1 is categorical. y is for the numbers.	
ECDF	Empirical cumulative distribution function. It is one of the important plots for understanding the data.	
plt.plot(x, y, marker='.', linestyle='none')		
plt.margins(0.0 2)	Keeps data off plot edges	
np.arange(3,7)	array([3, 4, 5, 6])	
numpy.arange([start,]stop, [step,]dtype=None)	Return evenly spaced values within a given interval.	

numpy	
np.percentile(arr ayname,[2.5, 25])	Compute the 2.5 and 25 percentiles of variable arrayname
sns.boxplot(x=coli	name1, y=colname2, data=df
np.var(arraynam e)	compute the variance of numpy array arrayname
np.std(arraynam e)	compute the standard deviation of numpy array arrayname

By **elhamsh**

cheatography.com/elhamsh/

Not published yet. Last updated 12th January, 2018. Page 1 of 2.

hypotheses (cont)

The p-	the probability of observing a test
value is	statistic equally or more extreme
generally	than the one you observed,
а	assuming the hypothesis you are
measure	testing is true.
of:	
а	is a single value of a statistic
permutati	computed from a permutation
on	sample.
replicate	

probabilistic logic

Statistical inference involves taking your data to probabilistic conclusions about what you would expect if you took even more data, and you can make decisions based on these conclusions.

np.random.ran dom()	The function returns a random number between zero and one
np.random.see d(42)	Seed the random number generator
np.empty(1000 00)	Initialize an empty array, random_numbers, of 100,000 entries
np.random.bino mial(n=100, p=0.05, size=10000)	# Take 10,000 samples out of the binomial distribution: n_defaults
np.random.pois son(10, size=10000)	Draw 10,000 samples out of Poisson distribution with a mean of 10
np.random.nor mal(20, 1, size=100000)	Draw 100,000 samples from a Normal distribution that has a mean of 20 and a standard deviation of 1
plt.hist(array, bins=100, normed=True, histtype='step')	histtype='step' smoothes histogram

Sponsored by Readability-Score.com

Measure your website readability! https://readability-score.com

Cheatography

StatiscalThinkingPython Cheat Sheet by elhamsh via cheatography.com/31327/cs/14239/

probabilistic logic (cont)				
plt.ylim(a, b)	limit the y axes between a and b			
np.random.exponential(mean, size=size)				
slope, intercept = np.polyfit(x, y, degree)	found the slope and intercept of the points (x,y). degree determines the degree of polynomial			
np.linspace(a, b, c)	get c points in the range between a and b			
np.empty_like (variable)	This function returns a new array with the same shape and type as a given array "variable"			
Bootstrapping	The use of resampled data to perform statistical inference			
If we have a data set with nn repeated measurements, a bootstrap sample is an array of length nn that was drawn from the original data with replacemen				
np.random.ch oice(array, size=n)	Generate bootstrap sample from array with size n			
Confidence interval of a statistic	If we repeated measurements over and over again, p% of the observed values would lie within the p% confidence interval.			
A confidence interval gives bounds on the range of parameter values you might expect to get if we repeated our measurements. For named distributions, you can compute them analytically or look them up, but one of the many beautiful properties of the bootstrap method is that you can just take percentiles of your bootstrap replicates to get your confidence interval. Conveniently, you can use the np.percentile() function.				

pairs involves resampling pairs of data. bootstrap

cheatography.com/elhamsh/

By elhamsh

C

Not published yet. Last updated 12th January, 2018. Page 2 of 2. Sponsored by Readability-Score.com Measure your website readability! https://readability-score.com