
Common Lisp Cheat Sheet
by ehaliewicz via cheatography.com/1470/cs/487/

Common Lisp Sequences

Creating Collec tions

(vector elements
...)

Generic vector of args.

(make- array size
[opts])

Returns empty n-dime ‐
nsional array.

(list elements ...) Creates a singly -linked
list of args.

Oper ating on Sequen ces

Gene ral

(length
sequence)

Returns length of
sequence.

(elt sequence
index)

Returns the corres ‐
ponding element of
sequence.

Vect ors

(vecto r-pop array) Destru ctively removes
the last element of
array.

(vecto r-push
new-el array)

Destru ctively appends
new-el to array.

 (If the array fill-p ointer
indicates full, nothing
occurs)

(vecto r-p ush -
extend new-el
array [opts])

Destru ctively appends
new-el to array.

 (will extend an array
with a fill-p ointer if
necessary)

Search and Sort

(count item
sequence [opts])

Returns number of
times item appears.

(position item
sequence [opts])

Returns index of item
or nil.

(sort sequence
predicate [opts])

Sorts sequence by
predicate function. (i.e.
#'<)

Common Lisp Sequences (cont)

i.e. (sort '(1 4
3 2) #'<)

=> '(1 2 3 4)

Filt ers

(count-if
predicate
sequence)

Returns number of
elements that satisfy
predicate

(remove-if
predicate
sequence)

Removes all elements that
satisfy predicate. (non-d ‐
est ruc tive)

 These functions have 'if-
not' variants.

Iter ation

(map result -
type func
sequences
...)

Returns the result of
applying an n-arg function
to the current element of n
sequences.

(mapcar
function
sequences)

Same as above, but for
lists.

(map-into
result -se ‐
quence func
sequences
...)

Places results into 'resul t-
s equ ence' rather than
creating a new sequence.

(reduce func
sequence
[opts])

Applies func to elements in
twos to return a single
value.

i.e. (reduce
#'+ '(1 2 3))

=> (+ 1 2) => (+ (+ 1 2) 3)
=> 6

(loop ...
[opts])

http:/ /cl -co okb ook.so urc ‐
efo rge.ne t/l oop.html

Assignment and Binding

(setf place val &rest args)
Sets value of 'place' to val. Works in pairs.
i.e. (setf 'a 1
'b 2)
Sets 'a to 1 and 'b to 2.
(let ((var-a value)
(var-b value))
Creates a context where var-a and var-b are
bound to their respective values.
(let* ((var-a value)
(var-b value))
Same as above, but bound sequen tially.
i.e. Bindings can refer to previous bindings.
(defpa rameter var-name value) Creates a
global variable.

By ehaliewicz
cheatography.com/ehaliewicz/

Not published yet.
Last updated 12th May, 2016.
Page 1 of 1.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/ehaliewicz/
http://www.cheatography.com/ehaliewicz/cheat-sheets/common-lisp
http://cl-cookbook.sourceforge.net/loop.html
http://www.cheatography.com/ehaliewicz/
http://crosswordcheats.com

	Common Lisp Cheat Sheet - Page 1
	Common Lisp Sequences
	Assignment and Binding

