Cheatography

CS4249 Cheat Sheet

by eevyern via cheatography.com/71068/cs/18011/

Scales	of Measurement	
Scale	Description	Examples
Nomi nal	Catergorical; order doesn't matter	Gender: 1 (male), 2 (female)
Ordin al	Ordered values. Order matters, but not difference between values	Agreement: 1 (SD), 2 (D), 3 (Neutral), 4 (A), 5 (SA). Pain Scale (1-10)
Interv	Numeric. Difference between values is meaningful	Relative Temperature: °C, °F, pH
Ratio	Numeric. Zero and ratios are meaningful	Height, Weight, Absolute Temperature (K)

Measurement is the process of observing and recording the observations collected as a part of a research effort.

Step 1: Define Research Questions

eg. How does your technique...

eg. How does your technique	·
• Compare with alternative techniques?	Techniques
• For which target population?	Target users
• For what tasks?	Tasks
• In terms of what measures?	Performance measures
• In what context?	Other factors

Target users: need to be specific - students who have been using the desired medium *consistently*, for example

Performance measures: like *speed, accuracy* **Other factors**: other than different techniques, what factors can *influence the measures?*

Step 2: Define Variables	
IV	Factors manipulated in the experimentHave multiple levels
DV	Factors being measured
Control variables	 Attributes fixed throughout the experiment Confounders - attributes that vary and aren't accounted for
Random variables	 Attributes that are randomly sampled Increases generalisability

Confounders rather than IVs could have caused changes in DV.

They make it difficult/impossible to draw conclusions.

Order of presentation and prior experience are two important confounders that we need to control. (by counter-balancing and proper sampling)

Step 3: Arranging Conditions (Within-Subjects)

eg. Technique (2 levels Gesture, Marking) Menu depth (2 levels: 1, 2)
 Full counterbalancing (n! conditions) Latin Square (n conditions) No counterbalancing (sequential) (1 condition)

Step 3: Arranging Conditions (Within-Subjects) (cont)

Determine minimum no.

of participants

conditions
together

Determine factorial

arrangement of

conditions

together

Multiply all

Determine arrangement for each participant

Condition reduction strategies:

- Pick the most important/interesting factors to test
- Run a few IVs at a time if strong effect, include IV in future studies, otherwise, pick fixed control value for it

One-way ANOVA

Basic Idea: ANOVA tries to	due to
find the sources of this	difference
variance:	between groups
	 Variability
	within each

Total Variability =
BetweenGroup +
WithinGroup

Ratio of Variability $F = (SS^{M}/DF^{B}) / (SS^{R}/DF^{W})$

group

SST = SSM + SSR

If the experiment is $\mathbf{successful},$ then $SS^{\!\!M}\!\!>\!_{SR}$

Between-group variability will explain more variance than within-group.

The bigger the **F value**, the smaller the **p value**, and the less like the null hypothesis (no difference) is true.

Steps:

1. Calculate SS^T	$SS^T=s_grand^2$
	(<i>N</i> -1)
	$DF^T = (N-1)$

By **eevyern** cheatography.com/eevyern/

Published 25th November, 2018. Last updated 25th November, 2018. Page 1 of 5. Sponsored by **Readability-Score.com**Measure your website readability!
https://readability-score.com

Cheatography

CS4249 Cheat Sheet

Theory

by eevyern via cheatography.com/71068/cs/18011/

One-way ANOVA (cont)

2. Calculate S^M	$SS^{M}=\sum_{i} \mathbf{x} n_{i} (\overline{x_{i}}-x-grand)^{2}$ • sum of $n \mathbf{x}$ difference of means from the grand mean $DF^{M}=(\text{No. of groups - 1})$
3. Calculate S^R	$SSR = \sum_i \mathbf{x} s_i \mathbf{z}^2 (n_i - 1)$ • sum of variance \mathbf{x} no. of results in each group DFR = total no. of results - no. of groups

Double check: $SS^T = SS^M + SS^R$ & $\mathrm{DFT} = \mathrm{DFM}$ - DFR

4. Calculate	$MS^{M} = SS^{M}/DF^{M}$
Mean Squared	MSR = SSR/DFR
Error	

5. Calculate F- $F = MS^{M} / MS^{R}$

if F is lower than value in F-table, then p < 0.05

→ results are statistically significant

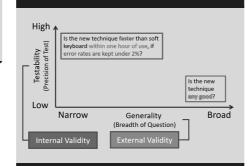
Behaviour Theories

Health	Perceived Benefits v Perceived
Belief	Barriers, Perceived Theat, Self-
Model	Efficacy, Cues to Action all contribute
	to Likelihood of Engaging in Health-
	Promoting Behaviour

Behaviour Theories (cont) Theory of Self-belief + Influenced beliefs, Reasoned Attitudes, Intention → Behaviour Action Self- Intrinsic (self-benefit) v Extrinsic Determina motivation (external benefits) tion

Goal Basic idea: goal serves as a
Setting motivator, work harder as long as
Theory they believe goal is achievable.
Importance in Clarity, Challenge
and Feedback

Social Cognitive, Environmental and Cognitive Behavioural factors determine human behaviour


Fogg Behaviour = Motivators, Ability,
Behaviour Triggers
al Model • Motivators: Sensation,

Anticipation, Social Cohesion

• Ability: Train or Simplify

• Triggers: Spark, Signal or Facilitator

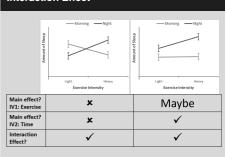
Testable Research Questions

Weak questions are untestable and broad Stronger questions are more testable, but less generalizable

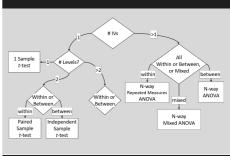
Published 25th November, 2018. Last updated 25th November, 2018. Page 2 of 5.

Step 4: Define Trials

Estimate the time	around 5-10 seconds?
for each trial	
Estimate the time	Time for each trial *
for each	no. of trials for each
condition	condition


Balance the trials (so experiment is within 45 min)

Combine with the Essentially, find the total condition time the experiment will take


Trials: a single repetition of a single condition Typically want to have at least **3 trials per condition** to increase reliability

Consider time: trials should last for **45 minutes** (excluding pre and post interviews)

Interaction Effect

Which t-test or ANOVA?

C

By **eevyern** cheatography.com/eevyern/

Sponsored by **Readability-Score.com**Measure your website readability!
https://readability-score.com

CS4249 Cheat Sheet

by eevyern via cheatography.com/71068/cs/18011/

Cognition Processes

Attention

Perception

Memory

Learning

Reading, speaking & listening

Problem-solving, planning, reasoning & decision-making

Attention

Selecting things to concentrate on at a point in time from the mass of stimuli around us

Focus on information that's relevant to what we are doing

Involves audio/visual senses

Design

· Make information salient if it

implications: needs attending to

· make things stand out

avoid cluttering interface

Perception

How information is acquired from the world, and transformed into experiences

Design representations that are readily perceivable

Implic

Group information

• Text should bne legible and distinguishable from the background

Memory

Stages of Encoding

memory: Storage

Retrieval

Encoding: · Determines which info is attended to in environment + how

it's intepreted

· Context affects extent to which info can be retrieved - different context → difficult to recall

Implicatio ns:

• Focus attention/no complicated procedures

· Recognition over recall

• Provide various ways of encoding and retrieving info (searching v history)

Storage:

Sensory Memory: · shortest-term memory, acts like a buffer for stimuli retrieved

· Ability to remember and process info at same time

• Information will decay within 10-

· Extended by rehearsal, hindered by interference

Longterm Memory: •Declarative Memory (factual info): • Semantic Memory (general) +

Episodic Memory (personal knowledge)

 Procedural Memory (skills/habits)

Memory (cont)

Retrieval: • Internal/External stimuli for

retrieval cues

· Encoded at same time as

memory

Cognitive System Principles

Uncertainty **Principle**

 $T=I^CH$

where T = Decision time, H = log2(n+1) (where n is the no. of choices)

Variable Rate

More effort → Faster

processing (ie. cycle time +

Principle

Cycle time also diminishes with practice:

 $_n = T_1 \times n^{-\alpha}$

Fitts' Law $T_M=a+b \log_2(A/W+1)$

where A = distance to target, W = error tolerance

Trans-theoretical Models

5 Stages Pre-contemplation,

of Change Contemplation, Preparation,

Action, Maintenance

Processes Consciousness raising, Social of Change liberation, Goal setting, Helping

relationships, Rewards

Processes of change can be applied to 5 stages of change.

Each person will value different processes differently.

By eevyern cheatography.com/eevyern/

Published 25th November, 2018. Last updated 25th November, 2018. Page 3 of 5.

Sponsored by Readability-Score.com Measure your website readability!

https://readability-score.com

Cheatography

CS4249 Cheat Sheet

by eevyern via cheatography.com/71068/cs/18011/

Statistics

We use sample statistics to estimate/make inferences about population parameters

Due to uncertainty and variability, conclusions and estimates may not always be

Need measures of reliability

Confiden ce

interval

- the confidence that the true population value of a parameter falls within a confidence interval
- affected by: variation & sample size
- · Level of significan

се

- •"P value", α
- the prob. of rejecting the null hypothesis when it is actually

true (Type I error)

- · ie. concluding that there is a difference when there may be no actual difference
- signifies the probability that the difference is due to chance

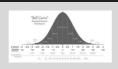
Level of Significanc

- Not significant (p>.1; p=n.s.)
- Marginally significant (p<0.1)

• (Fairly) significant (p<.05)

Threshold

- (Good) significant (p<.01)
- (Excellently) significant (p<.001)


Some Formulae

$$SSE = \sum_{i=1}^{n} (x_i - \bar{x})^2 = 5.2$$

$$Variance = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n} = \frac{5.2}{5} = 1.04$$

$$SD = s = \sqrt{Variance} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}} = \sqrt{\frac{52}{5}} = 1.02$$

Cumulative Percentage

Central Limit Theorem

As the sample size gets larger...

The mean of sample means approaches the population mean

The standard error of $SE=s/\sqrt{n}=\sqrt{(Variance/n)}$ the sameple means

= the standard deviation of the

population mean

SED Between 2 Samples

$$\boxed{SE = \frac{s}{\sqrt{n}} : SE_{M_1} = \frac{s_1}{\sqrt{n_1}} , SE_{M_2} = \frac{s_2}{\sqrt{n_2}}}$$

Propagation of Errors: combine errors in quadrature

$$\Delta f(x,y) = \sqrt{\left(\frac{\partial f}{\partial x}\Delta x\right)^2 + \left(\frac{\partial f}{\partial y}\Delta y\right)^2} \quad f(M_1, M_2) = M_1 - M_2$$

$$SE_{M_1 - M_2} = \sqrt{SE_{M_1}^2 + SE_{M_2}^2} = \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$$

2-Sample t-test

Small sample sizes → not normal distribution

Use tdistributio

$$\Delta f(x,y) = \sqrt{\left(\frac{\partial f}{\partial x}\Delta x\right)^2 + \left(\frac{\partial f}{\partial y}\Delta y\right)^2} \quad f(M_1, M_2) = M_1 - M_2$$

$$SE_{M_1-M_2} = \sqrt{SE_{M_1}^2 + SE_{M_2}^2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Published 25th November, 2018. Last updated 25th November, 2018. Page 4 of 5.

2-Sample t-test (cont)

Steps:

- 1. Calculate mean difference
- 2. Calculate SD
- 3. Calculate no. of SDs away from 0
- 4. Calculate df = smaller
- 5. Calculate p-value, for significance (which pvalue is it closest to)

If given desired confidence interval, steps:

1. Given desired CI 2. Get no. of SDs away from 0 from t-table 3. Calculate margin of

error in units ((2) x

Difference between groups more likely to be significant if:

- · Large difference between means
- Small SD or large n in each group

Assumptions:

- Continuous variable
- Independent samples

Also called the independent-samples t-test Other tests:

- One-sample t-test (sample v constant)
- Paired-sampled t-test (within-subjects, repeated measures)
- One-way ANOVA

By eevyern cheatography.com/eevyern/ Sponsored by Readability-Score.com Measure your website readability!

https://readability-score.com

CS4249 Cheat Sheet

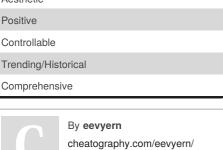
by eevyern via cheatography.com/71068/cs/18011/

Cognitive Heuristics Affects where emotions influence Availabil where people overestimate the ity importance of information available Confirm where we only listen to information that confirms out preconceptions ation Bias Halo where an outcome in one area is due to factors from another **Effect** Framing where the words used push listeners in a certain direction **Effect** Implications: watch out for biasing your

Nielsen Heuristics
Visibility of system status
Match system and real world
User control and freedom
Consistency and standards
Error prevention
Recognition over recall
Flexibility and efficiency of use
Aesthetic and minimalist design
Help users recognise, diagnose, recover from errors
Help and documentation

Structural Equation Modeling β coefficients: similar to correlation fficient Association Strength $.1 < |\beta| < .3$ Small/Weak $.3 < |\beta| < .5$ Medium/Moderate $|\beta| > .5$ Large/Strong * <.05 ** <.01

Design Strategies for Lifestyle Behaviour Change


Abstract & Reflective

Unobtrusive

participants.

Public

Aesthetic

Published 25th November, 2018. Last updated 25th November, 2018. Page 5 of 5.

Sponsored by Readability-Score.com Measure your website readability! https://readability-score.com