Cheatography

CS4249 Cheat Sheet

by eevyern via cheatography.com/71068/cs/18011/

Scales of Measurement		
Scale	Description	Examples
Nomi nal	Catergorical; order doesn't matter	<i>Gender</i> : 1 (male), 2 (female)
Ordin al	Ordered values. Order matters, but not difference between values	Agreement: 1 (SD), 2 (D), 3 (Neutral), 4 (A), 5 (SA). Pain Scale (1-10)
Interv al	Numeric. Difference between values is meaningful	<i>Relative Temperature</i> : °C, °F, pH
Ratio	Numeric. Zero and ratios are meaningful	Height, Weight, Absolute Temperature (K)

Measurement is the process of observing and recording the observations collected as a part of a research effort.

Step 1: Define Research Questions		
eg. How does your technique	9	
Compare with alternative techniques?	Techniques	
• For which target population?	Target users	
• For what tasks?	Tasks	
 In terms of what measures? 	Performance measures	
In what context?	Other factors	
Target users : need to be specific - students who have been using the desired medium <i>consistently</i> , for example		

Performance measures: like speed, accuracy Other factors: other than different techniques, what factors can influence the measures?

Step 2: Define Variables · Factors manipulated in the IV

IV	Have multiple levels	
DV	Factors being measured	
Control variables	 Attributes fixed throughout the experiment Confounders - attributes that vary and aren't accounted for 	
Random variables	 Attributes that are randomly sampled Increases generalisability 	
Confounders rather than IVs could have caused changes in DV. They make it difficult/impossible to draw conclusions.		
Order of presentation and prior experience		

Order of presentation and prior experience are two important confounders that we need to control. (by counter-balancing and proper sampling)

Step 3: Arranging Conditions (Within-Subjects)

List the IV and their Ievels	eg. Technique (2 levels: Gesture, Marking) Menu depth (2 levels: 1, 2)
Determine counter- balancing strategies for each IV	 Full counter- balancing (n! conditions) Latin Square (n conditions) No counter- balancing (sequential) (1 condition)

Step 3: Arranging Conditions (Within-Subjects) (cont)

Determine minimum no. of participants	Multiply all conditions together
Determine factorial arrangement of conditions	Put the permutations together
Determine arrangement for each participant	

Condition reduction strategies:

• Pick the most important/interesting factors to test

• Run a few IVs at a time - if strong effect, include IV in future studies, otherwise, pick fixed control value for it

One-way ANOVA

Basic Idea: ANOVA tries to find the sources of this variance:	 due to difference between groups Variability within each group 	
Total Variability = BetweenGroup + WithinGroup	SST=SSM+SSR	
Ratio of Variability	$F = (SS^{M}/DF^B) / (SS^{R}/DF^W)$	
If the experiment is successful , then <i>SSM></i> <i>SR</i> . Between-group variability will explain more variance than within-group.		
The bigger the F value , the smaller the p value , and the less like the null hypothesis (no difference) is true.		
Steps:		
1. Calculate SS^T	$SST = s_grand^2$ (N-1)	

steps.	
. Calculate SS^T	$SST=s_grand^2$
	(<i>N</i> -1)
	$DF^T = (N\text{-}1)$

By eevyern cheatography.com/eevyern/

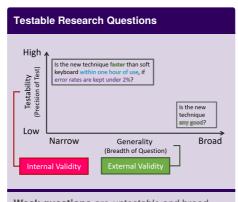
Published 25th November, 2018. Last updated 25th November, 2018. Page 1 of 5.

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours! https://apollopad.com

Cheatography

CS4249 Cheat Sheet by eevyern via cheatography.com/71068/cs/18011/


One-way ANOVA (cont)		
2. Calculate S^M	$SS^{M}=\sum_{i} \times n_{i} (x_{i}-x-grand)^{2}$ • sum of $n \times$ difference of means from the grand mean DF ^M = (No. of groups - 1)	
3. Calculate S^R	$SS^{R}=\sum_{i} \mathbf{x} s_{i}^{2} (n_{i}-1)$ • sum of variance \mathbf{x} no. of results in each group DF ^R = total no. of results - no. of groups	
Double check: <i>SS</i>	T=SSM+SSR & DFT = DFM -	
4. Calculate Mean Squared Error	$MS^{M} = SS^{M}/DF^{M}$ $MS^{R} = SS^{R}/DF^{R}$	
5. Calculate F- ratio	$F = MS^M / MS^R$	
	value in F-table, then p < 0.05 tistically significant	

Behaviour Theories

Health	Perceived Benefits v Perceived
Belief	Barriers, Perceived Theat, Self-
Model	Efficacy, Cues to Action all contribute
	to Likelihood of Engaging in Health-
	Promoting Behaviour

Debendenn	The sector s	/ ×
Behaviour	meories	cont

Theory of Reasoned Action	Self-belief + Influenced beliefs, Attitudes, Intention → Behaviour
Self- Determina tion Theory	Intrinsic (self-benefit) v Extrinsic motivation (external benefits)
Goal Setting Theory	Basic idea: goal serves as a motivator, work harder as long as they believe goal is achievable. Importance in Clarity, Challenge and Feedback
Social Cognitive Theory	Cognitive, Environmental and Behavioural factors determine human behaviour
Fogg Behaviour al Model	Behaviour = Motivators, Ability, Triggers • Motivators: Sensation, Anticipation, Social Cohesion • Ability: Train or Simplify • Triggers: Spark, Signal or Facilitator

Weak questions are *untestable* and broad Stronger questions are *more testable*, but *less generalizable*

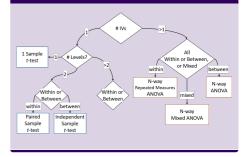
C

By **eevyern**

cheatography.com/eevyern/

Published 25th November, 2018. Last updated 25th November, 2018. Page 2 of 5.

Step 4: Define Trials


Estimate the time for each trial	around 5-10 seconds?	
Estimate the time for each condition	Time for each trial X no. of trials for each condition	
Balance the trials (so experiment is within 45 min)		
Combine with the condition arrangement	Essentially, find the total time the experiment will take	
Trials: a single repetition of a single condition		

Typically want to have at least **3 trials per condition** to increase reliability Consider time: trials should last for **45 minutes** (excluding pre and post interviews)

Interaction Effect

	Light Exercise	e Intensity	Light Heavy Exercise Intensity
Main effect IV1: Exercise		×	Maybe
Main effect IV2: Time		×	√
Interaction Effect?		✓	✓

Which t-test or ANOVA?

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours! https://apollopad.com

CS4249 Cheat Sheet

by eevyern via cheatography.com/71068/cs/18011/

Cognition Processes
Attention
Perception
Memory
Learning
Reading, speaking & listening
Problem-solving, planning, reasoning & decision-making
Attention
Selecting things to concentrate on at <i>a point in time</i> from the mass of stimuli around us
Focus on information that's relevant to what we are doing
Involves audio/visual senses
Design • Make information salient if it implications: needs attending to • make things stand out •avoid cluttering interface
Perception
How information is acquired from the world, and transformed into experiences
Design representations that are readily perceivable
Implic • Group information ation: • Text should bne legible and

Cheatography

 I ext should be legible and distinguishable from the background

By **eevyern** cheatography.com/eevyern/ Published 25th November, 2018. Last updated 25th November, 2018. Page 3 of 5.

retrieval cues • Encoded at same time as memoryCognitive System PrinciplesUncertainty PrincipleWhere T = Decision time, H = log2(n+1) (where n is the no. of choices)Variable More effort \Rightarrow Faster processing (ie. cycle time \clubsuit PrincipleCycle time also diminishes with practice: _n=T_1 $lpha$ n ^{-$lpha$} Fitts' Law $T_M=a+b \log_2(A/W+1)$ where A = distace to target, W = error		
• Encoded at same time as memory Cognitive System Principles Uncertainty $T=I^CH$ Principle where T = Decision time, H = log2(n+1) (where n is the no. of choices) Variable More effort → Faster Rate processing (ie. cycle time ↓ Principle Cycle time also diminishes with practice: _n=T_1 ★ n^{-\alpha} Fitts' Law $T_M=a+b \log_2(A/W+1)$ where A = distacce to target, W = error	Retrieval:	
memoryCognitive System PrinciplesUncertainty $T=I^CH$ Principle $T=1000000000000000000000000000000000000$		retrieval cues
Cognitive System PrinciplesUncertainty $T = I^C H$ Principlewhere T = Decision time, H = log2(n+1) (where n is the no. of choices)VariableMore effort \Rightarrow FasterRateprocessing (ie. cycle time \clubsuit PrincipleCycle time also diminishes with practice: $_n = T_1 \times n^{-\alpha}$ Fitts' Law $T_M = a + b \log_2(A/W+1)$ where A = distance to target, W = error		 Encoded at same time as
Uncertainty Principle $T=I^CH$ Where T = Decision time, H = log2(n+1) (where n is the no. of choices)Variable Nore effort \Rightarrow Faster Rate processing (ie. cycle time \clubsuit PrincipleCycle time also diminishes with practice: $_n=T_1 \Rightarrow n^{-\alpha}$ Fitts' Law $T_M=a+b \log_2(A/W+1)$ where A = distace to target, W = error		memory
Uncertainty Principle $T=I^CH$ Where T = Decision time, H = log2(n+1) (where n is the no. of choices)Variable Nore effort \Rightarrow Faster Rate processing (ie. cycle time \clubsuit PrincipleCycle time also diminishes with practice: $_n=T_1 \Rightarrow n^{-\alpha}$ Fitts' Law $T_M=a+b \log_2(A/W+1)$ where A = distance to target, W = error		
Principlewhere T = Decision time, H = log2(n+1) (where n is the no. of choices)Variable RateMore effort \Rightarrow Faster PrincipleCycle time also diminishes with practice: $_n=T_1 * n^{-\alpha}$ Fitts' Law $T_M=a+b \log_2(A/W+1)$ where A = distacce to target, W = error	Cognitive	System Principles
where T = Decision time, H = log2(n+1) (where n is the no. of choices) Variable More effort \Rightarrow Faster Rate processing (ie. cycle time \clubsuit Principle Cycle time also diminishes with practice: _n=T_1 $\times n^{-\alpha}$ Fitts' Law $T_M=a+b \log_2(A/W+1)$ where A = distance to target, W = error	Uncertaint	ty $T=I^CH$
n is the no. of choices) Variable More effort \Rightarrow Faster Rate processing (ie. cycle time \checkmark Principle Cycle time also diminishes with practice: _n=T_1 $\times n^{-\alpha}$ Fitts' Law $T_M=a+b \log_2(A/W+1)$ where A = distance to target, W = error	Principle	
n is the no. of choices) Variable More effort \Rightarrow Faster Rate processing (ie. cycle time \checkmark Principle Cycle time also diminishes with practice: _n=T_1 $\times n^{-\alpha}$ Fitts' Law $T_M=a+b \log_2(A/W+1)$ where A = distance to target, W = error	where T =	Decision time. $H = log2(n+1)$ (where
Variable RateMore effort \Rightarrow Faster processing (ie. cycle time \clubsuit PrincipleCycle time also diminishes with practice: $_n=T_1 \times n^{-\alpha}$ Fitts' Law $T_M=a+b \log_2(A/W+1)$ where A = distance to target, W = error		3 3 1 1
Rateprocessing (ie. cycle time \checkmark PrincipleCycle time also diminishes with practice: $_n=T_1 \times n^{-\alpha}$ Fitts' Law $T_M=a+b \log_2(A/W+1)$ where A = distance to target, W = error		,
Principle Cycle time also diminishes with practice: $n=T_1 \times n^{-\alpha}$ Fitts' Law $T_M=a+b \log_2(A/W+1)$ where A = distance to target, W = error		· · · · · · · · · · · · · · · · · · ·
Cycle time also diminishes with practice: $_n=T_1 \times n^{-\alpha}$ Fitts' Law $T_M=a+b \log_2(A/W+1)$ where A = distance to target, W = error		
$n=T_1 \times n^{-\alpha}$ Fitts' Law $T_M=a+b \log_2(A/W+1)$ where A = distance to target, W = error	Principle	
Fitts' Law $T_M=a+b \log_2(A/W+1)$ where A = distance to target, W = error	Cycle time	also diminishes with practice:
where A = distance to target, W = error	_n=T_1 ×	$n^{-\alpha}$
0, 7	Fitts' Law	$T_M=a+b \log_2(A/W+1)$
toloronoo	where A =	distance to target, W = error
loierance		
	tolerance	

5 Stages of Change	Pre-contemplation, Contemplation, Preparation, Action, Maintenance
Processes of Change	Consciousness raising, Social liberation, Goal setting, Helping relationships, Rewards
Processes of change can be applied to 5 stages of change.	

Each person will value different processes differently.

Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Memory

Stages of memory:	• Encoding • Storage • Retrieval
Encoding:	 Determines which info is attended to in environment + how it's intepreted Context affects extent to which info can be retrieved - different context difficult to recall
Implicatio ns:	 Focus attention/no complicated procedures Recognition over recall Provide various ways of encoding and retrieving info (searching v history)
Storage:	
Sensory Memory:	 shortest-term memory, acts like a buffer for stimuli retrieved Ability to remember and process info at same time Information will decay within 10- 15s Extended by rehearsal, hindered by interference
Long- term Memory:	 Declarative Memory (factual info): Semantic Memory (general) + Episodic Memory (personal knowledge) Procedural Memory (skills/habits)

Cheatography

CS4249 Cheat Sheet by eevyern via cheatography.com/71068/cs/18011/

Statistics		
	ple statistics to estimate/ make about population parameters	
	<i>rtainty</i> and <i>variability</i> , and estimates may not always be	
Need measu	ures of reliability	
• Confiden ce interval	 the confidence that the <i>true</i> population value of a parameter falls within a confidence interval affected by: variation & sample size 	
• Level of significan ce	 "P value", α the prob. of rejecting the null hypothesis when it is actually true (<i>Type I error</i>) ie. concluding that there is a difference when there may be no actual difference signifies the probability that the difference is due to chance 	
Level of Significanc e Threshold s	 Not significant (p>.1; p=n.s.) Marginally significant (p<0.1) (Fairly) significant (p<.05) (Good) significant (p<.01) (Excellently) significant (p<.001) 	

Some Formulae	
$SSE = \sum_{i=1}^{n} (x_i - \bar{x})^2 = 5.2$ $Variance = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n} = \frac{5.2}{5} = 1.04$ $SD = s = \sqrt{Variance} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}} = \sqrt{\frac{5.2}{5}} = 1.02$	
Cumulative Percentage	
Central Limit Theorem	
As the sample size gets larger	
The mean of sample means approaches the population mean	
The standard error of $SE=s/\sqrt{n}=\sqrt{(Variance/n)}$ the sameple means = the standard deviation of the population mean	
SED Between 2 Samples	
$SE = \frac{S}{\sqrt{n}}$: $SE_{M_1} = \frac{S_1}{\sqrt{n_1}}$, $SE_{M_2} = \frac{S_2}{\sqrt{n_2}}$ Propagation of Errors: combine errors in quadrature	

Cumulative Percentage		 4. Calculate df = smaller n - 1 5. Calculate p-value, for significance (which p-value is it closest to)
Central Limit Theorem As the sample size gets larger	If given desired confidence interval, steps:	 Given desired CI Get no. of SDs away from 0 from t-table Calculate margin of error in units ((2) X SD)
The mean of sample means approaches the population mean The standard error of $SE=s/\sqrt{n}=\sqrt{(Variance/n)}$	Difference between groups more likely to be significant if:	Large difference between means Small SD or large n in each group
the sameple means = the standard deviation of the	Assumptions:	Continuous variable Independent samples
population mean SED Between 2 Samples	Also called the indep Other tests: • One-sample t-test (s • Paired-sampled t-te:	' '
$SE = \frac{s}{\sqrt{n}} : SE_{M_1} = \frac{s_1}{\sqrt{n_1}} , SE_{M_2} = \frac{s_2}{\sqrt{n_2}}$ Propagation of Errors: combine errors in quadrature $\Delta f(x, y) = \sqrt{\left(\frac{\partial f}{\partial x}\Delta x\right)^2 + \left(\frac{\partial f}{\partial y}\Delta y\right)^2} f(M_1, M_2) = M_1 - M_2$	Paired-sampled t-ter repeated measures) One-way ANOVA	si (wiiniiir-Subjects,

2-Sample t-test (cont)

Steps:

1. Calculate mean

difference 2. Calculate SD 3. Calculate no. of SDs

away from 0

By eevyern
cheatography.com/eevyern/

Published 25th November, 2018. Last updated 25th November, 2018. Page 4 of 5.

Use t-

n

distributio

 $SE_{M_1-M_2} = \sqrt{SE_{M_1}^2 + SE_{M_2}^2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

Small sample sizes > not

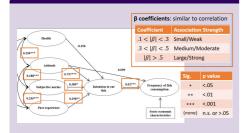
2-Sample t-test

normal distribution

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com

CS4249 Cheat Sheet

Nielsen Heuristics


Visibility of system status

Cheatography

Cognitive Heuristics	
Affects	where emotions influence decisions
Availabil ity	where people overestimate the importance of information available to them
Confirm ation Bias	where we only listen to information that confirms out preconceptions
Halo Effect	where an outcome in one area is due to factors <i>from another</i>
Framing Effect	where the words used push listeners in a certain direction

Implications: watch out for biasing your participants.

Structural Equation Modeling

Design Strategies for Lifestyle Behaviour Change Abstract & Reflective

Public

Aesthetic

Positive

Controllable

Trending/Historical

Comprehensive

By eevyern

cheatography.com/eevyern/

Published 25th November, 2018. Last updated 25th November, 2018. Page 5 of 5. Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours! https://apollopad.com

Match system and real world
User control and freedom
Consistency and standards
Error prevention
Recognition over recall
Flexibility and efficiency of use
Aesthetic and minimalist design
Help users recognise, diagnose, recover from

errors

Help and documentation