Cheatography

CS4249 Cheat Sheet

by eevyern via cheatography.com/71068/cs/18011/

Scales of Measurement		
Scale	Description	Examples
Nomi nal	Catergorical; order doesn't matter	Gender: 1 (male), 2 (female)
Ordin al	Ordered values. Order matters, but not difference between values	Agreement: 1 (SD), 2 (D), 3 (Neutral), 4 (A), 5 (SA). Pain Scale (1-10)
Interv al	Numeric. Difference between values is meaningful	Relative Temperature: °C, °F, pH
Ratio	Numeric. Zero and ratios are meaningful	Height, Weight, Absolute Temperature (K)

Measurement is the process of observing and recording the observations collected as a part of a research effort.

Step 1: Define Research Questions

eg. How does your technique...

eg. How does your technique	?
• Compare with alternative techniques?	Techniques
• For which target population?	Target users
• For what tasks?	Tasks
• In terms of what measures?	Performance measures
• In what context?	Other factors

Target users: need to be specific - students who have been using the desired medium *consistently*, for example

Performance measures: like *speed, accuracy* **Other factors**: other than different techniques, what factors can *influence the measures?*

Step 2: Define Variables	
IV	Factors manipulated in the experiment Have multiple levels
DV	Factors being measured
Control variables	Attributes fixed throughout the experiment Confounders - attributes that vary and aren't accounted for
Random variables	Attributes that are randomly sampledIncreases generalisability

Confounders rather than IVs could have caused changes in DV.

They make it difficult/impossible to draw conclusions.

Order of presentation and prior experience are two important confounders that we need to control. (by counter-balancing and proper sampling)

Step 3: Arranging Conditions (Within-Subjects)

• •	
List the IV and their levels	eg. Technique (2 levels: Gesture, Marking) Menu depth (2 levels: 1, 2)
Determine counter- balancing strategies for each IV	• Full counterbalancing (n! conditions) • Latin Square (n conditions) • No counterbalancing (sequential) (1 condition)

Step 3: Arranging Conditions (Within-Subjects) (cont)

Determine minimum no.	Multiply all
of participants	conditions
	together
Determine factorial	Put the
arrangement of	permutations
conditions	together

Determine arrangement for each participant

Condition reduction strategies:

- Pick the most important/interesting factors to test
- Run a few IVs at a time if strong effect, include IV in future studies, otherwise, pick fixed control value for it

One-way ANOVA

Basic Idea: ANOVA tries to find the sources of this variance:	due to difference between groups Variability within each group
Total Variability = BetweenGroup + WithinGroup	SST = SSM + SSR

Ratio of Variability $F = (SS^M/DF^B) / (SS^R/DF^W)$

If the experiment is $\mathbf{successful},$ then $SS^{\!\!M}\!\!>\!_{SR}$

Between-group variability will explain more variance than within-group.

The bigger the **F value**, the smaller the **p value**, and the less like the null hypothesis (no difference) is true.

Steps:

1. Calculate SS^T	$SS^T=s_grand^2$
	(<i>N</i> -1)
	$DF^T = (N-1)$

By **eevyern** cheatography.com/eevyern/

Published 25th November, 2018. Last updated 25th November, 2018. Page 1 of 5. Sponsored by **ApolloPad.com**

Everyone has a novel in them. Finish Yours! https://apollopad.com

Cheatography

CS4249 Cheat Sheet

by eevyern via cheatography.com/71068/cs/18011/

One-way ANOVA (cont)

2. Calculate S^M	$SS^{M}=\sum_{i} \times n_{-i} (\bar{x_{-i}}-x-grand)^{2}$ • sum of $n \times$ difference of means from the grand mean DF ^M = (No. of groups - 1)
3. Calculate S^R	$SSR = \sum_i \mathbf{x} s_i 2 (n_i - 1)$ • sum of variance \mathbf{x} no. of results in each group $DFR = \text{total no. of results} - \text{no. of groups}$

Double check: $SS^T = SS^M + SS^R$ & $\mathrm{DFT} = \mathrm{DFM}$ - DFR

4. Calculate	$MS^{M} = SS^{M}/DF^{M}$
Mean Squared	MSR = SSR/DFR
Error	

5. Calculate F- $F = MS^{M} / MS^{R}$ ratio

if F is lower than value in F-table, then p $<0.05\,$

→ results are statistically significant

Behaviour Theories

Health	Perceived Benefits v Perceived
Belief	Barriers, Perceived Theat, Self-
Model	Efficacy, Cues to Action all contribute
	to Likelihood of Engaging in Health-
	Promoting Behaviour

Behaviour Theories (cont)

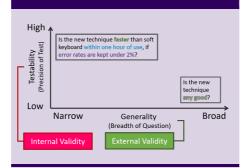
Theory of Reasoned Action	Self-belief + Influenced beliefs, Attitudes, Intention → Behaviour
Self- Determina tion Theory	Intrinsic (self-benefit) v Extrinsic motivation (external benefits)
Goal	Basic idea: goal serves as a

Setting	motivator, work harder as long as
Theory	they believe goal is achievable.
	Importance in Clarity, Challenge
	and Feedback

Social	Cognitive, Environmental and
Cognitive	Behavioural factors determine
Theory	human behaviour

Fogg	Behaviour = Motivators, Ability,
Behaviour	Triggers

al Model


• Motivators: Sensation,

Anticipation, Social Cohesion

• Ability: Train or Simplify

Triggers: Spark, Signal or Facilitator

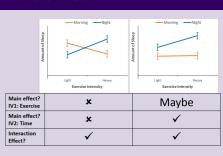
Testable Research Questions

Weak questions are *untestable* and broad Stronger questions are *more testable*, but less generalizable

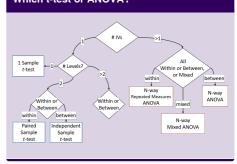
Published 25th November, 2018. Last updated 25th November, 2018. Page 2 of 5.

Step 4: Define Trials

Estimate the time	around 5-10 seconds?
for each trial	
Estimate the time	Time for each trial 🗙
for each	no. of trials for each
condition	condition


Balance the trials (so experiment is within 45 min)

Combine with the Essentially, find the total condition time the experiment will take


Trials: a single repetition of a single condition
Typically want to have at least 3 trials per
condition to increase reliability
Consider time: trials should last for 45 minutes

Consider time: trials should last for **45 minutes** (excluding pre and post interviews)

Interaction Effect

Which t-test or ANOVA?

By **eevyern** cheatography.com/eevyern/

Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish Yours! https://apollopad.com

CS4249 Cheat Sheet

by eevyern via cheatography.com/71068/cs/18011/

Cognition Processes

Attention

Perception

Memory

Learning

Reading, speaking & listening

Problem-solving, planning, reasoning & decision-making

Attention

Selecting things to concentrate on at a point in time from the mass of stimuli around us

Focus on information that's relevant to what we are doing

Involves audio/visual senses

Design

- · Make information salient if it
- implications: needs attending to
 - · make things stand out
 - avoid cluttering interface

Perception

How information is acquired from the world, and transformed into experiences

Design representations that are readily perceivable

Implic

- Group information
- ation:
- Text should bne legible and distinguishable from the background

Memory

Stages of Encoding

memory: Storage

Retrieval

Encoding: · Determines which info is attended to in environment + how

it's intepreted

· Context affects extent to which info can be retrieved - different context → difficult to recall

Implicatio ns:

- Focus attention/no complicated procedures
- · Recognition over recall
- · Provide various ways of encoding and retrieving info (searching v history)

Storage:

Sensory Memory:

- · shortest-term memory, acts like a buffer for stimuli retrieved
- · Ability to remember and process info at same time
- Information will decay within 10-
- · Extended by rehearsal, hindered by interference

Longterm Memory:

- •Declarative Memory (factual info): • Semantic Memory (general) +
- Episodic Memory (personal knowledge)
- Procedural Memory (skills/habits)

Memory (cont)

Retrieval: • Internal/External stimuli for

retrieval cues

· Encoded at same time as

memory

Cognitive System Principles

Uncertainty **Principle**

 $T=I^CH$

where T = Decision time, H = log2(n+1) (where n is the no. of choices)

Variable Rate

More effort → Faster

processing (ie. cycle time \(\lambda \)

Principle

Cycle time also diminishes with practice:

 $_n = T_1 \times n^{-\alpha}$

Fitts' Law $T_M=a+b \log_2(A/W+1)$

where A = distance to target, W = error tolerance

Trans-theoretical Models

5 Stages Pre-contemplation, of Change Contemplation, Preparation,

Action, Maintenance

Processes Consciousness raising, Social of Change liberation, Goal setting, Helping

relationships, Rewards

Processes of change can be applied to 5 stages of change.

Each person will value different processes differently.

By eevyern cheatography.com/eevyern/

Published 25th November, 2018. Last updated 25th November, 2018. Page 3 of 5.

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours! https://apollopad.com

Cheatography

CS4249 Cheat Sheet

by eevyern via cheatography.com/71068/cs/18011/

Statistics

We use sample statistics to estimate/make inferences about population parameters

Due to uncertainty and variability, conclusions and estimates may not always be

Need measures of reliability

Confiden ce interval

- the confidence that the true population value of a parameter falls within a confidence interval
- affected by: variation & sample size

· Level of significan

се

- •"P value", α
- the prob. of rejecting the null hypothesis when it is actually

true (Type I error)

- · ie. concluding that there is a difference when there may be no actual difference
- signifies the probability that the difference is due to chance

Level of Significanc

- Not significant (p>.1; p=n.s.)
- Marginally significant (p<0.1)

• (Excellently) significant (p<.001)

- (Fairly) significant (p<.05)
- Threshold • (Good) significant (p<.01)

Some Formulae

$$SSE = \sum_{i=1}^{n} (x_i - \bar{x})^2 = 5.2$$

$$Variance = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n} = \frac{5.2}{5} = 1.04$$

$$SD = s = \sqrt{Variance} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}} = \sqrt{\frac{5.2}{5}} = 1.02$$

Cumulative Percentage

Central Limit Theorem

As the sample size gets larger...

The mean of sample means approaches the population mean

The standard error of $SE=s/\sqrt{n}=\sqrt{(Variance/n)}$ the sameple means

= the standard

deviation of the population mean

SED Between 2 Samples

$$SE = \frac{s}{\sqrt{n}} \quad : \quad SE_{M_1} = \frac{s_1}{\sqrt{n_1}} \quad , \quad SE_{M_2} = \frac{s_2}{\sqrt{n_2}}$$

Propagation of Errors: combine errors in quadrature

$$\Delta f(x,y) = \sqrt{\left(\frac{\partial f}{\partial x}\Delta x\right)^2 + \left(\frac{\partial f}{\partial y}\Delta y\right)^2} \quad f(M_1, M_2) = M_1 - M_2$$

$$SE_{M_1, M_2} = SE_{M_1}^2 + SE_{M_2}^2 = \frac{s_1^2 + s_2^2}{s_1^2 + s_2^2}$$

2-Sample t-test

Small sample sizes → not normal distribution

Use tdistributio

Propagation of Errors: combine errors in quadrature
$$Af(x,y) = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \qquad f(M_x,M_y) = M_x - M_y$$

$$SE_{M_1-M_2} = \sqrt{SE_{M_1}^2 + SE_{M_2}^2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Published 25th November, 2018. Last updated 25th November, 2018. Page 4 of 5.

2-Sample t-test (cont)

Steps:

- 1. Calculate mean difference
- 2. Calculate SD
- 3. Calculate no. of SDs away from 0
- 4. Calculate df = smaller
- 5. Calculate p-value, for significance (which pvalue is it closest to)

If given desired confidence interval, steps:

1. Given desired CI 2. Get no. of SDs away from 0 from t-table 3. Calculate margin of

error in units ((2) x SD)

Difference between groups more likely to be significant if:

- · Large difference between means
- Small SD or large n in each group

Assumptions:

- Continuous variable
- Independent samples

Also called the independent-samples t-test Other tests:

- One-sample t-test (sample v constant)
- Paired-sampled t-test (within-subjects, repeated measures)
- · One-way ANOVA

By eevyern cheatography.com/eevyern/ Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours! https://apollopad.com

CS4249 Cheat Sheet

by eevyern via cheatography.com/71068/cs/18011/

Cognitive Heuristics

Affects where emotions influence decisions

Availabil where people overestimate the ity importance of information available

to them

Confirm where we only listen to information ation that confirms out **preconceptions**

Bias

Halo where an outcome in one area isEffect due to factors from another

Framing Effect

where the words used push listeners in a **certain direction**

Implications: watch out for biasing your participants.

Nielsen Heuristics

Visibility of system status

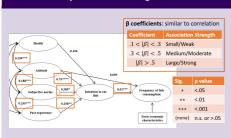
Match system and real world

User control and freedom

Consistency and standards

Error prevention

Recognition over recall


Flexibility and efficiency of use

Aesthetic and minimalist design

Help users recognise, diagnose, recover from

Help and documentation

Structural Equation Modeling

Design Strategies for Lifestyle Behaviour Change

Abstract & Reflective

Unobtrusive

Public

Aesthetic

Positive

Controllable

Trending/Historical

Comprehensive

By **eevyern** cheatography.com/eevyern/

Published 25th November, 2018. Last updated 25th November, 2018. Page 5 of 5. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish Yours! https://apollopad.com