\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{Kayla (Education Help23)} \pdfinfo{ /Title (biology-genetic-inheritance-heredity.pdf) /Creator (Cheatography) /Author (Kayla (Education Help23)) /Subject (Biology Genetic Inheritance - Heredity Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{B86DCF} \definecolor{LightBackground}{HTML}{F6ECF9} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Biology Genetic Inheritance - Heredity Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{Kayla (Education Help23)} via \textcolor{DarkBackground}{\uline{cheatography.com/201049/cs/42509/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}Kayla (Education Help23) \\ \uline{cheatography.com/education-help23} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 25th February, 2024.\\ Updated 25th February, 2024.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Terms - Alphabetical}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Allele:}} Different form of the same gene} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Continuous Variation:}} Occurs when a phenotype shows multiple variations in a population through multiple genes} \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Gene:}} Basic unit of DNA - hereditary material. \{\{nl\}\}It occupies a specific location on a chromosome and determines a particular characteristic in an organism} \tn % Row Count 8 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Genotype:}} An organisim's genetic information} \tn % Row Count 9 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Heredity:}} Transfer of traits from parent to offspring} \tn % Row Count 11 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Phenotype:}} Set of observable traits} \tn % Row Count 12 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Polygenic:}} Multiple genes contributing to one trait eg. height or weight.} \tn % Row Count 14 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Gregor Mendel}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Studied the phenotypes of generations of peas. \newline % Row Count 1 (+ 1) Some of the pea plant phenotypes are: \newline % Row Count 2 (+ 1) - Purple flowers or white flowers \newline % Row Count 3 (+ 1) - Yellow seeds or green seeds \newline % Row Count 4 (+ 1) - Wrinkled seeds or round seeds \newline % Row Count 5 (+ 1) - Tall or short plants% Row Count 6 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Alleles}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Humans have 2 alleles for each gene \newline % Row Count 1 (+ 1) {\bf{Dominant allele:}} Will mask a recessive gene – {\bf{TT or Tt}} \newline % Row Count 3 (+ 2) {\bf{Recessive allele:}} Is only expressed when a gene has two of this type of allele – {\bf{tt}}% Row Count 5 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Genotypes}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Homozygous dominant}} genotype: 2 dominant alleles (TT or AA)} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Homozygous recessive}} genotype: 2 recessive alleles (tt or aa)} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Heterozygous}} genotype: one dominant allele and one recessive allele (Tt or Aa)} \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{One-Trait Inheritance}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The types of gametes that are produced depends on the genotype of the parent cell. \newline % Row Count 2 (+ 2) Examples of one-trait inheritance \newline % Row Count 3 (+ 1)  Cheek dimples \newline % Row Count 4 (+ 1)  Free or attached earlobes \newline % Row Count 5 (+ 1)  Freckles \newline % Row Count 6 (+ 1) One-trait crosses consider only one set of alleles - \newline % Row Count 8 (+ 2) e.g. HH x Hh \newline % Row Count 9 (+ 1) Remember that a gamete (egg or sperm) has only \newline % Row Count 10 (+ 1) one allele \newline % Row Count 11 (+ 1)  e.g. a 'H' or a 'h'% Row Count 12 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Punnet Squares}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Can be used to predict genotypes and phenotypes of offspring from genetic crosses. \newline % Row Count 2 (+ 2) Steps for a Punnet Square (based on the picture below) \newline % Row Count 4 (+ 2) Step 1: Figure our the genotypes of the parents - {\bf{Rr x RR}} \newline % Row Count 6 (+ 2) Step 2: Place one Parent on the top and one on the outside \newline % Row Count 8 (+ 2) Step 3: Cross them. {\bf{Always make sure to put the capital letter first}}% Row Count 10 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Punnet Squares}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/education-help23_1708834817_Punnet Square.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Monohybrid Cross}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Both parents are heterozygous (or a hybrid) for a single (mono) trait. \newline % Row Count 2 (+ 2) Based on the picture below the trait is freckles.% Row Count 3 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Monohybrid Cross}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/education-help23_1708835895_f58ef96a-67b8-4e00-bce4-7ccb64ccd647.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Ratios}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Genotypic ratio: the number of offspring with the same genotype \newline % Row Count 2 (+ 2) Phenotypic ratio: the number of offspring with the same outward appearance \newline % Row Count 4 (+ 2)  What is the genotypic ratio for the Monohybrid cross above? \newline % Row Count 6 (+ 2)  1: 2: 1 (1 FF: 2 Ff: 1 ff) \newline % Row Count 7 (+ 1)  What is the phenotypic ratio? \newline % Row Count 8 (+ 1)  3: 1 (3 with freckles and 1 with no freckles) \newline % Row Count 9 (+ 1) For a monohybrid cross, 3:1 phenotypic ratio is always expeccted when one allele is completely dominant over the other.% Row Count 12 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Test Crossing}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Determine whether an organism with a dominant phenotype is homozygous or heterozygous. \newline % Row Count 2 (+ 2) The genotype is unknown (Hh or Hh) \newline % Row Count 3 (+ 1) Rules of a test cross \newline % Row Count 4 (+ 1) 1. If the cross yeilds 100\% dominant phenotype offspring, the parent is homozygous dominant. \newline % Row Count 6 (+ 2) 2. If the cross yeilds 50\% dominant phenotype and 50\% recessive phenotype offspring, the parent is heterozygous. \newline % Row Count 9 (+ 3) Example shown in picture below.% Row Count 10 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Test Crossing}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/education-help23_1708837037_1d99bbab-b600-4b43-9a52-90cbe2c5427f.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Mendelian Laws}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Law of Segregation} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}During formation of gametes, the 2 traits carried by each parent will separate} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Law of Independent Assortment} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}The homologous pairs separate into gametes is completely random, so any possible combination can occur.} \tn % Row Count 7 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{If the genes for two different traits are found on different chromosomes, we can use a dihybrid cross to look at the possible genotype and phenotype outcomes.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Dihybrid Cross}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{A cross between two individuals that carry two different traits that determines the probability of the traits being passed onto the offspring. \newline % Row Count 3 (+ 3) A dihybrid is heterozygous for 2 traits. \newline % Row Count 4 (+ 1) A dihybrid cross {\bf{always}} gives a 9:3:3:1 phenotypic ratio% Row Count 6 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Dihybrid Cross}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/education-help23_1708839427_a1baf4ca-7c75-4467-acb4-0612a09e5922.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Non-Mendelian Inheritance}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Polygenic Inheritance}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Multiple genes affect one trait (eg. hair colour, eye color, skin colour)} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Incomplete Dominance}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Dominant allele is partially expressed, resulting in an intermediate phenotype \{\{nl\}\}(Eg. Red X White = Pink heterozygous).} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Codominance}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}both alleles are expressed in the hetero- zygote neither is dominant or recessive, but there is no blending} \tn % Row Count 11 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Sex-linked Inheritance}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Traits that are carried on by the sex chromosomes} \tn % Row Count 14 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Codominance - Blood Types}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Different combinations of the three blood-type alleles produce four different possible phenotypes, or blood types (A, B, AB, and O) \newline % Row Count 3 (+ 3) I\textasciicircum{}A\textasciicircum{} and I\textasciicircum{}B\textasciicircum{} are completely dominant over i, and I\textasciicircum{}A\textasciicircum{} is codominant with I\textasciicircum{}B\textasciicircum{} \newline % Row Count 5 (+ 2) {\bf{I\textasciicircum{}A\textasciicircum{} -\textgreater{} dominant allele for blood type A}} \newline % Row Count 6 (+ 1) {\bf{I\textasciicircum{}B\textasciicircum{} -\textgreater{} dominant allele for blood type B}} \newline % Row Count 7 (+ 1) {\bf{i -\textgreater{} recessive allele for blood type O}} \newline % Row Count 8 (+ 1) .% Row Count 9 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Blood Types Cont'}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/education-help23_1708843144_Blood Types.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Type AB blood has no antibodies, any blood can be donated to them - universal acceptor \newline \newline Type O - universal donor} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{X-linked Influences}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Some inheritance patterns depend on which chromosomes the gene is located on. \newline % Row Count 2 (+ 2) The X chromosome contains many genes that are not related to sex characteristics, and those genes are called X-linked (genes on the X chromosome unrelated to sex characteristics). \newline % Row Count 6 (+ 4) Human X-linked, recessive traits include hemophilia, which is a blood clotting disorder and red-green colour blindness. \newline % Row Count 9 (+ 3) Each of these traits are much more common in males than females because males have only one X chromosome and females need to inherit two mutated alleles to have the disease% Row Count 13 (+ 4) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Genetic Disorders}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Sickle-cell Anemia} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Autosomal Recessive.}} The hemoglobin gene is mutated, causing abnormal red blood cell formation and reduced capacity to carry oxygen.} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Tay Sachs} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Autosomal Recessive.}} Lysosomal enzyme is mutated, causing brain deterioration leading to death} \tn % Row Count 8 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Cystic Fibrosis} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Autosomal Recessive.}} the chloride channel gene is mutated, causing altered water balance inside of cells, and this leads to excessive mucus production, which impacts the lungs, liver, pancreas, and sweat glands.} \tn % Row Count 14 (+ 6) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Huntington's Disease} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Autosomal Dominant.}} CAG nucleotide repeats are inserted into a gene that affects a protein in the brain.} \tn % Row Count 18 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Hemophilia} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Recessive X-linked.}} Affects a gene involved in blood clotting.} \tn % Row Count 21 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}