\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{Kayla (Education Help23)} \pdfinfo{ /Title (biology-dna-rna-and-protein-synthesis.pdf) /Creator (Cheatography) /Author (Kayla (Education Help23)) /Subject (Biology: DNA, RNA, \& Protein Synthesis Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{B559AC} \definecolor{LightBackground}{HTML}{FAF4F9} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Biology: DNA, RNA, \& Protein Synthesis Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{Kayla (Education Help23)} via \textcolor{DarkBackground}{\uline{cheatography.com/201049/cs/42519/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}Kayla (Education Help23) \\ \uline{cheatography.com/education-help23} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 28th February, 2024.\\ Updated 28th February, 2024.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Terms - Alphabetical}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Alternative Splicing}} Some exons forming part of the mature mRNA, other exons doing so at other times, to form alternate amino acid sequences and therefore different proteins} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{DNA (Deoxyribonucleic acid):}} Genetic material of humans} \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Exons}} Sequences of DNA that translate into amino acid sequences for protein synthesis} \tn % Row Count 8 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Introns}} allow for alternative splicing, which in turn allows one gene to code for multiple transcripts and therefore serve multiple complex cellular functions.} \tn % Row Count 12 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Nucleic acids:}} long polymers composed of repeating nucleotides} \tn % Row Count 14 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Nucleotide:}} pentose sugar, phosphate and a nitrogenous base} \tn % Row Count 16 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Promoter Region}} A region of a DNA upstream from the gene that is {\bf{not transcribed}} and that RNA polymerase binds to} \tn % Row Count 19 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{RNA (Ribonucleic acid):}} Used to make genes into proteins} \tn % Row Count 21 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{RNA Polymerase:}} An enzyme that transcribes DNA into mRNA.} \tn % Row Count 23 (+ 2) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Semi-conservative}}: Method of DNA replication where the original strands of DNA separate and act as a template for two new strands} \tn % Row Count 26 (+ 3) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Splicing}} introns are removed from the pre-mRNA by the spliceosome and exons are spliced back together.} \tn % Row Count 29 (+ 3) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Spliceosome}} removes introns from a transcribed pre-mRNA,} \tn % Row Count 31 (+ 2) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Terms - Alphabetical (cont)}} \tn % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Terminator Sequence}} A sequence of DNA at the end of a gene that causes mRNA molecule to form a hairpin loop, causing the polymerase to dissociate from DNA} \tn % Row Count 4 (+ 4) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Transcription: }} A Messenger RNA (mRNA) is made from a gene within DNA} \tn % Row Count 6 (+ 2) % Row 14 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Translation}} Using the mRNA to direct the production of a protein} \tn % Row Count 8 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{DNA Structure}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/education-help23_1708904926_DNA_ribbon.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Double helix which is composed of 2 strands of nucleotides that are antiparallel \newline \newline One strand runs 5' to 3' and the other strand runs in the opposite direction 3' to 5' \newline \newline The sugar and phosphate make up the backbone while the bases make up the "rungs" of the ladder.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Bases}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Larger bases are called {\bf{purines}} and have a double ringed structure: Adenine and Guanine \newline % Row Count 2 (+ 2) Smaller bases are called {\bf{pyrimidines}} and have a single ringed structure: Cytosine and Thymine \newline % Row Count 4 (+ 2) For DNA \newline % Row Count 5 (+ 1) Adenine (A) \textless{}-\textgreater{} Thymine (T) \newline % Row Count 6 (+ 1) Cytosine (C) \textless{}-\textgreater{} Guanine (G) \newline % Row Count 7 (+ 1) Remember the pairs: \newline % Row Count 8 (+ 1) {\bf{A}}pple on {\bf{T}}rees \newline % Row Count 9 (+ 1) {\bf{C}}ar in {\bf{G}}arage \newline % Row Count 10 (+ 1) For RNA \newline % Row Count 11 (+ 1) Adenine (A) \textless{}-\textgreater{} {\bf{Uracil (U)}} \newline % Row Count 12 (+ 1) Cytosine (C) \textless{}-\textgreater{} Guanine (G) \newline % Row Count 13 (+ 1) Remember the pairs: \newline % Row Count 14 (+ 1) {\bf{A}}pple are {\bf{U}}nder \newline % Row Count 15 (+ 1) {\bf{C}}ar in {\bf{G}}arage% Row Count 16 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{DNA Replication}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{• The two strands of DNA that form the double helix DNA molecule are {\bf{complementary}} to each other \newline % Row Count 3 (+ 3) • The hydrogen bonds that hold the base pairs together are {\bf{weak bonds}} and are easy to separate \newline % Row Count 6 (+ 3) Simplified Steps in DNA replication \newline % Row Count 7 (+ 1) 1. An enzyme called {\bf{helicase}} unwinds the DNA. The hydrogen bonds between the base pairs are broken \newline % Row Count 10 (+ 3) 2. DNA polymerase moves along each strand to unwound DNA and adds the correcr complementary nucleotides \newline % Row Count 13 (+ 3) 3. Breaks in the sugar-phosphate backbone are sealed by an enzyme called {\bf{DNA ligase}} \newline % Row Count 15 (+ 2) 4. The two DNA molecules are identical to each other and to the original parent molecule \newline % Row Count 17 (+ 2) Note: DNA replication is semi conservative \newline % Row Count 18 (+ 1) • Mistakes can occur during replication. There are repair enzymes that work to fix this. Sometimes an error persists leading to a mutation, and to a genetic and phenotypic variability% Row Count 22 (+ 4) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{DNA replication is semi conservative} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{DNA Replication is Semi-Conservative}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{• The parental DNA strand is used as a template to synthesize a new daughter stand \newline % Row Count 2 (+ 2) • This happens for both parental strands \newline % Row Count 3 (+ 1) • Therefore, after DNA replication you get two DNA molecules – each consisting of one parental strand and one daughter (newly synthesized) strand% Row Count 6 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{DNA Mutations}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{How do cells deal with mutations? \{\{nl\}\} {\bf{Proofreading}} – Polymerase is able to recognize some mistakes that occur during replication \{\{nl\}\}{\bf{Repair enzyme}} – Enzymes that correct DNA mutations} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{What if mutations still occur? \{\{nl\}\} {\bf{Apoptosis}} – programmed cell death \{\{nl\}\}{\bf{Immune cells}} – kill cancer cells} \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{What is mutations still occur? \{\{nl\}\}{\bf{Disease}}} \tn % Row Count 8 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{There are different types of DNA mutations \{\{nl\}\} {\bf{Substitution}} – The wrong base or bases are matched \{\{nl\}\} {\bf{Insertion}} – An extra base or bases are added in \{\{nl\}\} {\bf{Deletion}} – A base or bases are removed \{\{nl\}\}{\emph{Insertion and Deletion are the most harmful – results in frame-shift mutations (a change in multiple codons)}}} \tn % Row Count 15 (+ 7) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Causes:}} \{\{nl\}\}Mistakes during replication \{\{nl\}\}Transposition \{\{nl\}\}Inherited mutations \{\{nl\}\}Mutagens and Carcinogens \{\{nl\}\}Viruses \{\{nl\}\}Radiation \{\{nl\}\}Chemicals \{\{nl\}\}Cancer – usually two or more mutations in genes that code for repair enzymes, or genese that affect cell cycle} \tn % Row Count 21 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{RNA}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/education-help23_1709135531_RNA Structur.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Single stranded nucleic acid molecule transcribed from a DNA gene sequence that codes for synthesis of a protein \newline \newline Sugar-phosphate backbone} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Types of RNA}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Ribosomal (rRNA)}} Joins with proteins to form ribosomes} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Messenger (mRNA)}} carries genetic information from DNA to the ribosomes (made in transcription)} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Transfer (tRNA)}} transfers amino acids to a ribosome where they are added to a forming protein (used in translation)} \tn % Row Count 7 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Protein}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{End-products of gene expression – take a gene and make it a protein} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Composed of subunits called amino acids} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{20 different amino acids in proteins (that are synthesized on ribosomes)} \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Central Dogma of Gene Expression}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{• The information contained in DNA is stored in blocks – genes \newline % Row Count 2 (+ 2) • The genes code for mRNA, which codes for proteins \newline % Row Count 4 (+ 2) • The proteins determine how a cell functions \newline % Row Count 5 (+ 1) • The path of information is DNA -\textgreater{} RNA -\textgreater{} Protein \newline % Row Count 7 (+ 2) • When gene sequences are used by the cell to make protein, called {\bf{gene expression}}% Row Count 9 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Replication (DNA -\textgreater{} DNA) \newline Transcription (DNA -\textgreater{} RNA) \newline Translation (RNA -\textgreater{} protein)} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Transcription Overview}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{• mRNA is made from a DNA template \newline % Row Count 1 (+ 1) • mRNA is processed before leaving the nucleus \newline % Row Count 2 (+ 1) • mRNA moves to the ribosomes to be read \newline % Row Count 3 (+ 1) • Transcriptions in both prokaryotes and eukaryotes has 3 stages: initiation, elongation, and termination% Row Count 6 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Transcription}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{• The complementary RNA nucleotide for each DNA nucleotide is as follows: \{\{nl\}\}DNA \textless{}-\textgreater{} RNA} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{T A} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{C G} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{G C} \tn % Row Count 5 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{A U} \tn % Row Count 6 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Transcription}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Initiation}} \newline % Row Count 1 (+ 1) • RNA polymerase binds to a promoter region on DNA \newline % Row Count 3 (+ 2) • They help the polymerase locate the beginning of a gene \newline % Row Count 5 (+ 2) • Most mRNA molecules start with the codon AUG, which serves as the gene's starting point, corresponding to ATG on the coding strand. \newline % Row Count 8 (+ 3) {\bf{Elongation}} \newline % Row Count 9 (+ 1) • RNA polymerase adds complementary nucleotides to the template strand of the gene on DNA \newline % Row Count 11 (+ 2) • This produces the mRNA \newline % Row Count 12 (+ 1) • This process ensures that the mRNA sequence matches the order of nucleotides in the DNA coding strand, except RNA has uracil instead of thymine. \newline % Row Count 15 (+ 3) • RNA polymerase can only add nucleotides in the 5' to 3' direction, similar to DNA replication. ATP is needed for RNA polymerase to function. \newline % Row Count 18 (+ 3) {\bf{Termination}} \newline % Row Count 19 (+ 1) • Transcription of a gene finishes when the polymerase enzyme encounters a terminator sequence. \newline % Row Count 21 (+ 2) • The mRNA dissociates and is now free to be translated by a ribosome \newline % Row Count 23 (+ 2) • DNA remains unchanged, and the mRNA is set for translation.% Row Count 25 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Transcription}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/education-help23_1709136316_Transcription.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{RNA Processing}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{• The freshly formed mRNA, known as the primary mRNA or primary transcript, undergoes three essential steps to transform into a mature mRNA that can only be used as a template for translation \newline % Row Count 4 (+ 4) • To shield the RNA from degradation, a 5' cap and a 3' poly-A tail are added. \newline % Row Count 6 (+ 2) • Splicing then occurs to eliminate noncoding segments of the gene, known as introns, which don't contribute to the amino acid sequence. \newline % Row Count 9 (+ 3) • The coding parts of the gene, called exons, remain. \newline % Row Count 11 (+ 2) • Spliceosomes, along with specific proteins, remove the introns and splice together the exons, resulting in a shorter mRNA transcript. \newline % Row Count 14 (+ 3) • The intron sequences, constituting about 90\% of a typical human gene, are not translated.% Row Count 16 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{RNA Processing}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/education-help23_1709136552_RNA PROCESS.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Alternative Splicing}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{• During RNA processing, all the exons of a gene are brought together \newline % Row Count 2 (+ 2) • By using different combinations of the same exons, different proteins can be created. \newline % Row Count 4 (+ 2) • So, alternative splicing results in the ability of one gene to produce multiple different proteins.% Row Count 7 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{In humans, genes may be spliced together in different ways.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Translation}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{• Synthesizing a protein from an mRNA sequence on a ribosome \newline % Row Count 2 (+ 2) {\bf{Ribosomes}} \newline % Row Count 3 (+ 1) • consist of two subunits: \newline % Row Count 4 (+ 1) • a small subunit and a large subunit \newline % Row Count 5 (+ 1) • mRNA binds to the small subunit. \newline % Row Count 6 (+ 1) • The large subunit has three binding sites, {\bf{A (Amino acid), P (Polypeptide) and E (Exit)}} sites \newline % Row Count 9 (+ 3) {\bf{Translation Cont'd}} \newline % Row Count 10 (+ 1) • To correctly read a gene, a cell must translate the information encoded in the DNA into the language of proteins. \newline % Row Count 13 (+ 3) • The mRNA is "read" in three-nucleotide units called codons. \newline % Row Count 15 (+ 2) • Each codon corresponds to a particular amino acid. \newline % Row Count 17 (+ 2) • It is the tRNA molecules that bring amino acids to the ribosome to use in making proteins. \newline % Row Count 19 (+ 2) **Transfer RNA (tRNA) \newline % Row Count 20 (+ 1) • tRNA molecules each have a special three nucleotide RNA sequence called an anticodon. \newline % Row Count 22 (+ 2) • The anticodon is complementary to one of the 64 codons of the genetic code \newline % Row Count 24 (+ 2) • tRNA molecules also each bind an amino acid at one end. \newline % Row Count 26 (+ 2) • There are more than 20 different tRNA molecules, so some tRNAs bind to the same amino acids. \newline % Row Count 28 (+ 2) {\bf{Translation Cont'd}} \newline % Row Count 29 (+ 1) • After an mRNA molecule attaches to the small ribosomal subunit, the larger ribosomal subunit joins, forming a full ribosome. \newline % Row Count 32 (+ 3) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Translation (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{• During translation, the mRNA moves through the ribosome in sets of three nucleotides at a time. \newline % Row Count 3 (+ 3) • As this happens, a fresh tRNA carrying an amino acid to be added enters the ribosome at the A site. \newline % Row Count 6 (+ 3) • Translation proceeds until a stop codon marks the end of the protein synthesis process. At this point, the ribosome disassembles, and the newly synthesized protein is released into the cell. \newline % Row Count 10 (+ 4) • In eukaryotic cells, after translation, proteins undergo folding into secondary and tertiary structures and may undergo additional processing within the Golgi apparatus.% Row Count 14 (+ 4) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Genetic Code (need to understand for mRNA)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/education-help23_1709136816_Genetic code.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{• Made of 3 bases (nucleotides) \newline • Every 3 bases on the mRNA is called a codon that codes for a particular amino acid in translation \newline • There are 64 possible codons \newline • Also called the triplet code \newline •{\bf{'Start'}} refers to the first amino acid in a protein. (It is almost always a methionine with codon AUG). \newline • {\bf{'Stop'}} refers to the signal that indicates that translation is over. \newline • Does not code for an amino acid.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}