\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{Kayla (Education Help23)} \pdfinfo{ /Title (biology-cellular-reproduction.pdf) /Creator (Cheatography) /Author (Kayla (Education Help23)) /Subject (Biology: Cellular Reproduction Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{863CC7} \definecolor{LightBackground}{HTML}{F7F2FB} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Biology: Cellular Reproduction Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{Kayla (Education Help23)} via \textcolor{DarkBackground}{\uline{cheatography.com/201049/cs/42555/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}Kayla (Education Help23) \\ \uline{cheatography.com/education-help23} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 27th February, 2024.\\ Updated 27th February, 2024.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Terms - Alphabetical}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Actin}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}A globular protein that forms microfilaments and is found in all eukaryotic cells} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Centromere}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Structure in chromosome that holds together the two chromatids} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Cleavage Furrow}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Occurs when animal cell membranes indent due to contraction of actin microfilaments in order for the cell to divide} \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Crossing Over}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Swapping of genetic information between homologous chromosomes} \tn % Row Count 13 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Equtorial Plane}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Place where chromosomes line up in the center of thee cell during cell division} \tn % Row Count 16 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Homologous Chromosomes}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Two similar, but {\bf{not identical}}, chromosomes where one comes from the mother, the other from the father, also called homologues} \tn % Row Count 20 (+ 4) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Independent Assortment}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}: Random separation of homologues into gametes during meiosis} \tn % Row Count 23 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Karyotype}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Organization of chromosomes and their homologous pairs from chromosome 1 – 23, from longest to shortest} \tn % Row Count 27 (+ 4) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Kinetochore} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Protein located at the centromere region that holds sister chromatids together} \tn % Row Count 30 (+ 3) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Terms - Alphabetical (cont)}} \tn % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Mitosis}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Process of cell division in somatic cells (body cells) to make identical cells} \tn % Row Count 3 (+ 3) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Meiosis}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Cell division that occurs in germ cells (only produce sex cells)} \tn % Row Count 6 (+ 3) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Sister Chromatid}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Identical replicated chromosomes} \tn % Row Count 8 (+ 2) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Spindle Fibres}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Microtubules that transport chromosome during cell division} \tn % Row Count 11 (+ 3) % Row 13 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Synapsis}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Process of drawing together homologous chromosomes down their entire lengths so that crossing over can occur} \tn % Row Count 15 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Chromosomes}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{• Humans have 46 chromosomes that are in 23 pairs in a cells nucleus \newline % Row Count 2 (+ 2) • {\bf{Autosomes}} are the 22 pairs of chromosomes that control traits that {\bf{do not relate to gender}} \newline % Row Count 5 (+ 3) • {\bf{Sex chromosomes}} are the 1 pair that contain the genes that {\bf{do control gender}} \newline % Row Count 7 (+ 2) • {\bf{Body cells (somatic cells)}} have 46 (2n) chromosomes in pairs called {\bf{diploid}} \newline % Row Count 9 (+ 2) • Sex cells (gametes) have 23 (n) chromosomes not in pairs called haploid% Row Count 11 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{n = number of chromosomes \newline n = 23 \newline 2n = 2(23) = 46} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Control of the Cell}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{• External signals (hormones) can stimulate a cell to divide \newline % Row Count 2 (+ 2) • Genes stimulate the cell cycle: \newline % Row Count 3 (+ 1) • Proto-oncogenes stimulate cell cycle \newline % Row Count 4 (+ 1) • Tumour-suppressor genes inhibit the cell cycle% Row Count 5 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Genetic Variation}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{There are many variations of each gene, called alleles \newline % Row Count 2 (+ 2) Gene combinations we inherit from our parents depend on how their genes were sorted during meiosis process \newline % Row Count 5 (+ 3) Each sperm or egg that are made will always be different \newline % Row Count 7 (+ 2) {\bf{Crossing over }}happens between two non-sister chromatids of homologous chromosomes. They break at the same point, exchanging sections of chromosomes, resulting in hybrid chromosomes. \newline % Row Count 11 (+ 4) In metaphase I, how homologous chromosomes pair up is random. Different arrangements of which homologous chromosome goes to which pole lead to gametes with various combinations of parental chromosomes. This randomness is called independent assortment. \newline % Row Count 17 (+ 6) Sexual reproduction significantly influences species evolution by quickly creating new genetic combinations, leading to genetic diversity. Three methods contribute to this diversity: \newline % Row Count 21 (+ 4) 1. Independent assortment \newline % Row Count 22 (+ 1) 2. Crossing over \newline % Row Count 23 (+ 1) 3. Random fertilization, where any of 8 million sperm can fertilize the egg, further enhances genetic variation.% Row Count 26 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Eukaryotic Cell Cycle Phases}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Divided into Phases}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Interphase (G1, S, and G2 phases)}} Cell grows larger, organelles double and DNA replicates \{\{nl\}\} {\bf{G1 phase:}} The cell grows, doubling its organelles \{\{nl\}\} {\bf{S phase:}} DNA replication (DNA synthesis). Each homologous chromosome replicates, forming 2 identical copies of {\bf{sister chromatids}} that are joined together by a centromere. \{\{nl\}\} {\bf{G2 phase:}} Needs proteins for division} \tn % Row Count 10 (+ 10) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Cell Division}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Mitosis (M phase):}} Dividing the nucleus. Protein synthesis stops and no more cell growth occurs \{\{nl\}\}{\bf{Cytokinesis (C phase):}} Dividing the cytoplasm} \tn % Row Count 15 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Cell Division: Mitosis}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Prophase}} \newline % Row Count 1 (+ 1) • Chromosome are visible and condensed. \newline % Row Count 2 (+ 1) • The nuclear membrane and nucleolus breaks down \newline % Row Count 4 (+ 2) • The centrioles migrate to opposite poles of the cell and spindle fibres (microtubules) form \newline % Row Count 6 (+ 2) {\bf{Metaphase (Middle)}} \newline % Row Count 7 (+ 1) • Chromosomes line up in the middle of the cell attached to the microtubules \newline % Row Count 9 (+ 2) • The centromeres are aligned along the equatorial plane (equator) that divides the cell in half \newline % Row Count 11 (+ 2) {\bf{Anaphase (away)}} \newline % Row Count 12 (+ 1) • Sister chromatids separate to opposite poles \newline % Row Count 13 (+ 1) • The spindle fibres start to disintegrate near the centriole, leading the shortening spindles to tug the chromosomes toward the cell's poles. \newline % Row Count 16 (+ 3) {\bf{Telophase ("two" – two cells)}} \newline % Row Count 17 (+ 1) • A new nuclear membrane surrounds the set of chromosomes at each pole \newline % Row Count 19 (+ 2) • Chromosomes begin to uncondensed \newline % Row Count 20 (+ 1) • Nucleolus reforms \newline % Row Count 21 (+ 1) • There are now two daughter nuclei - {\bf{not daughter cells}} \newline % Row Count 23 (+ 2) {\bf{Cytokinesis}} \newline % Row Count 24 (+ 1) • The cytoplasm divides equally \newline % Row Count 25 (+ 1) • There are now two daughter cells \newline % Row Count 26 (+ 1) • In animal cells, actin filaments contract and pinch the cell in two – this forms a cleavage furrow \newline % Row Count 29 (+ 3) • ATP is required for the contraction – two new identical, somatic, diploid daughter cells are produced% Row Count 32 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Checkpoints}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{G1:}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}It checks whether the cell is big enough and has made the proper proteins for the synthesis phase. If not, the cell goes through a resting period (G0) until it is ready to divide.} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{G2:}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}It checks whether DNA has been replicated correctly. If so, the cell continues on to mitosis.} \tn % Row Count 8 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{M:}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}It checks whether mitosis is complete. If so, the cell divides, and the cycle repeats.} \tn % Row Count 11 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{If it does not pass the checkpoints the cell self-destructs and prevents damaged cells from dividing} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Changes in Chromosome Number}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Nondisjunction}} is the failure of chromosomes to separate correctly during either meiosis I or meiosis II \newline % Row Count 3 (+ 3) This leads to an abnormal chromosome number \newline % Row Count 4 (+ 1) When a gamete has an abnormal number of chromosomes, it's called aneuploidy, which means there's an abnormal chromosome count. \newline % Row Count 7 (+ 3) If fertilization involves gametes with abnormal chromosome numbers, normal development typically isn't possible, leading to early death. \newline % Row Count 10 (+ 3) However, if there's an extra chromosome 21, or less commonly, an extra chromosome 22, development can proceed. \newline % Row Count 13 (+ 3) A child with an extra chromosome 21, known as trisomy 21 or Down syndrome, experiences delayed development and mental impairment.% Row Count 16 (+ 3) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Mitosis Cycle}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/education-help23_1709071725_Cell-Cycle-Diagram.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Meiosis Overview}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{• Contributes to genetic variety \newline % Row Count 1 (+ 1) • Makes only germ cells – gametes \newline % Row Count 2 (+ 1) • Is a reduction division 46 -\textgreater{} 23 chromosomes \newline % Row Count 3 (+ 1) • Meiosis involves 2 divisions \newline % Row Count 4 (+ 1) • Meiosis I – separates the homologous pairs \newline % Row Count 5 (+ 1) • Meiosis II – separates the sister chromatids% Row Count 6 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Phases of Meiosis I}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Prophase I}} \newline % Row Count 1 (+ 1) • Same as mitosis \newline % Row Count 2 (+ 1) • The pairing/intertwining of homologous chromosomes is {\bf{Synapsis}} \newline % Row Count 4 (+ 2) {\bf{Metaphase I (middle)}} \newline % Row Count 5 (+ 1) • The homologous pairs with their attached sister chromatids that line up. \newline % Row Count 7 (+ 2) {\bf{Anaphase I (Away)}} \newline % Row Count 8 (+ 1) • The spindle fibers start to break down near the centrioles, causing the shrinking spindles to pull the homologous chromosomes towards the cell's poles, while the sister chromatids remain connected. \newline % Row Count 13 (+ 5) {\bf{Telophase I}} \newline % Row Count 14 (+ 1) • Homologous chromosomes are found at both ends of the cell, and the spindle fibers break apart. New nuclear membranes form around each set of chromosomes at both ends of the cell, the chromosomes start to relax, and the nucleolus reappears. \newline % Row Count 19 (+ 5) {\bf{Cytokinesis}} \newline % Row Count 20 (+ 1) • The cytoplasm is evenly split, ensuring each new cell gets its share of organelles and fluid. Two haploid cells are made, but since each homologous chromosome stays connected to its sister chromatid, each cell has 46 chromosomes. So, another cell division happens to give each gamete just 23 chromosomes.% Row Count 27 (+ 7) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Phases of Meiosis II}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Prophase II}} \newline % Row Count 1 (+ 1) Before the next prophase, DNA doesn't replicate. Cells from meiosis I proceed directly to meiosis II, skipping a second S phase. DNA condenses, the nuclear membrane and nucleolus break down, centrioles move, and spindle fibers form. \newline % Row Count 6 (+ 5) {\bf{Metaphase II (middle)}} \newline % Row Count 7 (+ 1) Spindle fibres connect to the kinetochore, and the chromosomes line up at the equatorial plane, but now in meiosis II, the chromosomes with their sister chromatid all line up. \newline % Row Count 11 (+ 4) {\bf{Anaphase II (Away)}} \newline % Row Count 12 (+ 1) Spindle fibres begin to break down at the centriole end, which causes the sister chromatids to separate toward each end of the cell. \newline % Row Count 15 (+ 3) {\bf{Telophase II}} \newline % Row Count 16 (+ 1) At each end of the cell, sister chromatids are present, and the spindle fibers break apart. A fresh nuclear membrane forms around each set of 23 chromosomes on both ends of the cell, the chromosomes start to relax, and the nucleolus reappears. \newline % Row Count 21 (+ 5) {\bf{Cytokinesis: }} \newline % Row Count 22 (+ 1) In males, meiosis II results in four sperm cells, each containing 23 chromosomes. In females, during each cell division, one cell receives more cytoplasm, becoming the egg cell, while the other becomes a polar body that dissolves. However, females don't finish the final meiotic division unless fertilization happens. Eggs remain paused in metaphase II until ovulation and won't complete the last division if not fertilized.% Row Count 31 (+ 9) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Difference with mitosis and meiosis}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/education-help23_1709071912_Mitosis-Meiosis-difference.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}