
OOD Cheat Sheet
by Edgar (edgarjoel21) via cheatography.com/44289/cs/14900/

Design Principles

1. Javadoc all public classes and
methods. Class comment should
be at least two sentences, and
provide inform ​ation not already
clear from its defini ​tion.
2. Use interface types over
concrete classes wherever
possible. Exception: immutable
" ​val ​ue" objects. Classes with no
interface.
3. Fields must always be private.
Exception: constants. Methods,
classes should be as private as
possible.
4. Class should never have public
methods not in the interface (aside
from constr ​uctor).
5. Compos ​ition over inheri ​tance.
6. Catch and handle ​/report errors
as early as possible. Use Java
compiler checks, enums, final first,
runtime checks second.
7. Use class types over strings.
8. Check inputs.

Design Principles (cont)

9. Use exceptions only for
except ​ional situations -- not for flow
control.
10. Checked vs unchecked:
checked: reasonable expect ​ation
that the program can recover.
Unchecked: programmer error
(may still be recove ​rable).
11. Don't leave things in an
incons ​istent state for any
substa ​ntive length of time.
12. Beware of refere ​nces, copies,
and mutation. Make defensive
copies.
13. Separate respon ​sib ​ili ​ties: one
class, one respon ​sib ​ility.
14. Use class hierar ​chies and
dynamic dispatch over tagged
classes, complex if/switch
statem ​ents.
15. Don't duplicate code.
16. Open for extension, closed for
modifi ​cation: make changes
without modifying existing code;
write code to support later changes
without modifi ​cation.
17. Extens ​ibi ​lity: design to make
likely later changes easier.

Design Principles (cont)

18. Write tests first, cover the
range of situat ​ions, edge cases.
Write code to be testable (avoid
System.out); do not expose fields
or add public methods just to allow
for testing.
19. Loose coupling over tight
coupling (avoid System.out). Write
reusable components when
possible.
20. You can't change an interface
once it's published.
21. If you override equals(),
override hashCo ​de(), and vice-
v ​ersa.
22. Reuse existing except ​ions,
classes, libraries, and designs.

Scanner Methods

public boolean hasNext()

Returns true if the

scanner has another token

in its input

public String next()

Finds and returns the next

complete token from the sc

(throws NoSuch ​Element if
no tokens and

Illega ​lState if scanner is
closed

Scanner Methods (cont)

Scann ​er(​Rea ​dable source)
Constructs a new Scanner

that produces values

scanned from the specified

source.

Readable r = new

String ​Rea ​der ​(St ​ring);
Appen ​dable a = new
String ​Bui ​lder(); THROWS
EXCEPTION

CLASS INVARIANTS

NOT
INVARIANTS

INVARIANT

value is small A logical statement
is a claim that is
true or false

value never
decreases

The instan ​tanous
state of an object is
the combin ​ation of
values of all its
fields at some
point in time

value is an
int

The invariant is
ensured by
constr ​uctors in the
sense that
whenever a public
constr ​uctor returns,
the logical
statement holds

By Edgar (edgarjoel21)
cheatography.com/edgarjoel21/

Not published yet.
Last updated 27th February, 2018.
Page 1 of 3.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/edgarjoel21/
http://www.cheatography.com/edgarjoel21/cheat-sheets/ood
http://www.cheatography.com/edgarjoel21/
http://crosswordcheats.com

OOD Cheat Sheet
by Edgar (edgarjoel21) via cheatography.com/44289/cs/14900/

CLASS INVARIANTS (cont)

 Preserving the logical statement
means that the method doesn't
introduce nonsense - instead, we
know that if given a object in a
good state then it will leave the
object in a good state as well

Enables a form of reasoning called
rely-g ​uar ​antee.
- If the constr ​uctor ensures some
property
- and every method preserves the
property
- then every public method, on
entry, can rely on the property

Compos ​ition over inheri ​tance

- Composition over

inheritance

- delegate design pattern:

take the previous code we

want to use and make it a

field instead of extending

it

- has-a instead of is-a

- always get copies of

every private field

instead of passing in the

real thing

public boolean remove(int

i) {

 ​ ​ ​ ​return
deletg ​ate.re ​mov ​e(i);
}

Compos ​ition over inheri ​tance
(cont)

public boolean

contai ​ns(int i) {
 ​ ​ ​return
delega ​te.c ​on ​tai ​ns(i);
}

Map methods

clear()

contai ​nsK ​ey(​Object key)
contai ​nsV ​alu ​e(O ​bject
value)

entrySet() returns a set

view of the mappings

(Set<M ​ap.E ​nt ​ry<K, V>>)
equals ​(Object o)
get(Object key)

hashCode()

isEmpty()

keySet() returns a set of

the keys Set<K>

put(k key, V value)

Associates the value with

the key

putAll ​(Ma ​p<? extends K, ?
extends V> m) Copies into

new map

remove ​(Object key)
size()

values() Returns a

Collection view of the

values (Colle ​cti ​on< ​V>)

Equals

@Override

public boolean

equals ​(Object that) {
 ​ ​ if (this == that) {
 ​ ​ ​ ​ ​ ​return true;
 ​ ​ }
 ​ ​ if (!(that instanceof
Duration)) {

 ​ ​ ​ ​ ​ ​return false;
 ​ ​ {
 ​ ​ ​return ((Dura ​tion)
that).i ​nS ​eco ​nds() ==
this.i ​nSe ​con ​ds();
 ​ }

Stack Methods

empty() Tests if this

stack is empty (boolean)|

peek() Looks at top object

of stack without removing

it (E) |

pop() Removes the object

at the top of this stack

and returns that object

(E)|

push(E item) Pushes an

item onto the top of this

stack (E) |

searc ​h(O ​bject o) Returns
the 1-based position where

an object is on this stack

(int) |

Stack Methods (cont)

add, add, addAll, addAll,

addEle ​ment, capacity,
clear, clone, contains,

contai ​nsAll, copyInto,
elementAt, elements,

ensure ​Cap ​acity, equals,
firstE ​lement, get,
hashCode, indexOf,

indexOf, insert ​Ele ​mentAt,
isEmpty, iterator,

lastEl ​ement, lastIn ​dexOf,
lastIn ​dexOf,
listIt ​erator,
listIt ​erator, remove,
remove, removeAll,

remove ​All ​Ele ​ments,
remove ​Ele ​ment,
remove ​Ele ​mentAt,
remove ​Range, retainAll,
set, setEle ​mentAt,
setSize, size, subList,

toArray, toArray,

toString, trimTo ​Size

Deque ​<E> is an interface
(double ended queue)

Deque ​<In ​teg ​er> stack = new
ArrayD ​equ ​e<I ​nte ​ger ​>();

TIps

- check for overflow

- canoni ​calize means
converting data with

multiple repres ​ent ​ations
into a standard or normal

form

- bug may be that a method

used a non-copy of

something

- interfaces can be

extended to add methods to

something

By Edgar (edgarjoel21)
cheatography.com/edgarjoel21/

Not published yet.
Last updated 27th February, 2018.
Page 2 of 3.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/edgarjoel21/
http://www.cheatography.com/edgarjoel21/cheat-sheets/ood
http://www.cheatography.com/edgarjoel21/
http://crosswordcheats.com

OOD Cheat Sheet
by Edgar (edgarjoel21) via cheatography.com/44289/cs/14900/

Static

Static: Java's version of global

variables

Static Methods: Called on the class

rather than an instance and thus

dont have a this to work on. Ex:

Long.h ​ash ​Code()
Static classes: behave like normal

classes just nested in its enclosing

classes namespace. Outer.n ​ested is
how you refer to it. Outer.n ​ested
can see outers private members and

vise versa

- constants should be public static

final and in all caps

Hashcode

@Override

public int hashCode() {

 ​ ​ ​return Object.ha ​sh(​field, field,
field);

 ​ ​ }

Must use fields that equals uses

ABSTRACT TEST

protected abstract

FreecellOperations<Card>

freecellModel();

 ​ ​public static class SingleMove
extends Abstra ​ctF ​ree ​cel ​lMo ​del ​Tests2
{

 ​ ​ ​ ​@Ov ​erride

ABSTRACT TEST (cont)

 ​ ​ ​ ​pro ​tected
Freece ​llO ​per ​ati ​ons ​<Ca ​rd>
freece ​llM ​odel() {
 ​ ​ ​ ​ ​ ​return
Freece ​llM ​ode ​lCr ​eat ​or.c ​r
e ​ate ​(Ga ​meT ​ype.SI ​NGL ​EMOVE
);

 ​ ​ ​ }
 ​ }
 ​ ​public static class
MultiMove extends

Abstra ​ctF ​ree ​cel ​lMo ​del ​Tes
ts2 {

 ​ ​ ​ ​@Ov ​erride
 ​ ​ ​ ​pro ​tected
Freece ​llO ​per ​ati ​ons ​<Ca ​rd>
freece ​llM ​odel() {
 ​ ​ ​ ​ ​ ​return
Freece ​llM ​ode ​lCr ​eat ​or.c ​r
e ​ate ​(Ga ​meT ​ype.MU ​LTI ​MOVE)
;

 ​ ​ ​ }

Array

- an array is a mutable,

fixed-length, constant-

time-indexed sequence of

values of type t

- new int[]{2, 4, 6, 8}

gives you fixed size

array

- new int[9]{} gives you

a empty array of 9

spaces with null or 0

- uses length function

- mutability

(intAr ​ray[3] = 17;)
means int at index 3 is

now 17

- assert ​Arr ​ayE ​quals

By Edgar (edgarjoel21)
cheatography.com/edgarjoel21/

Not published yet.
Last updated 27th February, 2018.
Page 3 of 3.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/edgarjoel21/
http://www.cheatography.com/edgarjoel21/cheat-sheets/ood
http://www.cheatography.com/edgarjoel21/
http://crosswordcheats.com

	OOD Cheat Sheet - Page 1
	Design Principles
	CLASS INVARIANTS
	Scanner Methods

	OOD Cheat Sheet - Page 2
	Equals
	Map methods
	Compos­ition over inheri­tance
	Stack Methods
	TIps

	OOD Cheat Sheet - Page 3
	Static
	Hashcode
	Array
	ABSTRACT TEST

