Cheatography

Sequences and Series Cheat Sheet by ebabor via cheatography.com/69500/cs/17544/

Telescoping and Geometric series are the only types of series that you can estimate sums from. So, you must use these test's properties to estimate these sums

If the question is asking for absolute convergence or conditional convergence. You will need to use the Ratio Test, Root Test, or the definition of Absolute/Conditional Convergence

Must show ALL work to receive full credit for questions. Study the process to solve the problems, don't just guess through the review

Шł	2	-1		
ш	-	-1	3	

Test for Diverg- enc- e(TFD)		You absolutely cannot determine if a series is convergent from this test.
	Diverges	If limit of series $\neq 0$ or ∞
Integral Test	Converges	If integral of series $<_{\infty}$
	Diverges	If integral of series $=_{\infty}$
Ratio Test	Conver- ges/Co- nverges Absolutely	If limit of 0≤ (ak+1) /(ak) <1
	Diverges	If limit >1
	Inconc- lusive	If limit =1
Root Test	Conver- ges/Co- nverges Absolutely	lf 0≤limit of the k th root of ak <1
	Diverges	If limit of the k th root of ak >1

Tests (con

Tests (cont)		
	Inconc- lusive	If limit of k th root of ak =1
Direct Comparison Test(CT)	Converges	If ∑bk converges AND bk is the larger of the two functions
	Diverges	If ∑bk diverges AND bk is smaller of two functions
Limit Comparison Test(LCT)	Converges	If bk converges AND limit of 0<(ak)/(bk)<∞
	Diverges	If bk AND limit of 0<(ak)/(bk) <∞
Alternating Series Test(AST)	Converges	If all 3 conditions for AST are met
	Diverges	If limit condition fails, ∑ak is immedi- ately divergent by TFD

Properties of Special Series		
Geometric Series	Converges	If Absolute Value of r<1. Converges at S= (first term)/(1-r)
	Diverges	lf Absolute Value of r≥1
P-Series	Converges	lf p>1
	Diverges	lf p≤1
Telesc- oping	Converges	Value that the limit of the remaining terms approach

Properties of Special Series (cont)

	Diverges	Almost never. On the test it will converge	
Definition of Conver- gence	Absolute Conver- gence	If and only if ∑ ak is convergent	
	Condit- ional Conver- gence	If and only if ∑ak is convergent, but ∑ a k is divergent	
When to Us	se Tests		
Properties	If you can identify the series as a geometric, p, or telesc- oping series, then use their respective properties. If the given series looks <i>close</i> to one of these series see if you can use algebra to rearrange it into one of them		

C By

By ebabor cheatography.com/ebabor/ Published 22nd October, 2018. Last updated 22nd October, 2018. Page 1 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Cheatography

Sequences and Series Cheat Sheet by ebabor via cheatography.com/69500/cs/17544/

When to Use Tests (cont)			
Comparison Tests(CT and LCT)	ONLY POSITIVE TERMS! If you can tell if the series has negative terms,((-1) ^k or sin/cos), do not use this test. If series has is rational and has a root in the denomi- nator, compare with a p- series. ak gives use absolute convergence		
Alternating Series Test(AST)	Series with (-1) ^k can be testes with AST		
Integral Test	ONLY POSITIVE TERMS! If you can look at the function and easily take the integral, it is probably good to use this test		
Ratio Test	If series contains: k!, or powers <i>and</i> exponentials, almost guaranteed to use ratio test		
Root Test	If the entire series can be written to the k th power, you can use the root test		
Integral Test			
Conditions:			

- 1. f(x) is positive on its interval
- 2. f(x) is continuous on its interval
- 3. f(x) decreasing as x-> ∞ (derivative is negative)

Integral Test (cont)

- * Must change ak to a function in order to take derivative
 * Integral starts off from k to ∞, so you must
- change the integral to k to t with limit as t- $\ensuremath{\scriptstyle>\!\infty}$
- * Answer you get is not where the $\sum\!\!a\mathbf{k}$ converges

Alternating Series Test

Conditions:
1. bk>0
2. bk≥bk+1
3. limit of bk=0
* If $\Sigma b{\tt k}$ fits all three conditions, $\Sigma a{\tt k}$
convergent by AST
the second way of the second second

- * If 3'^d condition fails, $\sum a \, {\bf k}$ is divergent by TFD
- * If series contains $(-m)^k,$ pull $(-1)^k$ out and keep m^k in $b{\rm k}$

Integral Remainder

Known n th Value	Solving for Sn(sum of the series approx- imation)	Plug n into the series
	Solving for Rn (approximation of the remainder)	Solve integral from n to ∞
Known Error Bound	Set the integral of f(x) from n to ∞ less than error bound. Once solved, answer will be given in terms of n<#. Must round up the number since series only use integers and if you rounded down, the value of the integral would be larger than the error bound	

Alternating Series Remainder

Known Error	Set error bound less than bn+1. Solve for a #>n, round up n to
Bound	next highest whole number
	If the inequality is very difficult to solve, the use of a table, shown below, is acceptable. When the middle column, $bn+1$, is less than third column, error bound, then that value is you final answer for n. Since the original variable in the equation is k, and k=n+1, then the value of the final term you can stop on to reach your error bound will be k

n th	b n+1	Error Bound
term		

By ebabor

cheatography.com/ebabor/

Published 22nd October, 2018. Last updated 22nd October, 2018. Page 2 of 2.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com