Foundation of Statistics Sec. 1 & 2 under Shirin Cheat Sheet by Dylan (dylablo) via cheatography.com/68322/cs/17214/

Definitions, Properties, Rules and Laws (cont)

Basic Mathematical Symbols and Explanations

 Σ : Sum of the following set/set of values returned from a function. There's ususally a variable name and assignment underneath it, and a limit above - this means you are summing the values returned by the function with the value range from the bottom to to the top.

sum=0;

```
for(int i =0; i++; i<=10) {
  sum += do_function(i); }</pre>
```

 \square : Product of the following set/set of values returned from a function. There's usually a variable name and assignment underneath it, and a limit above - this means you are getting the product of all the values returned by the function with the value range from the bottom to to the top. prod=0;

for(int i =0; i++; i<=10){
prod *= do_function(i); }</pre>

 \forall : For all/For every instance. Universal quantifier in predicate logic. ie. The stated holds true for every situation. Can be further expanded with \forall i (assuming i is defined in the previously stated function) followed by a subset or function which would read as "The stated holds true for all i in the following set/function"

 $\mathbb{R}:$ Real numbers. ie. Not imaginary numbers (sqrt of a negative number) and not infinity. Integers, negatives, floats, doubles etc. are all considered "Real numbers"

f: Integral. Used for finding areas, volumes, central points etc. Not confident in my own summary, please follow this link https://www.mathsisfun.com/calculus/integration-introduction.html

lima ->x: This is the function to find/define the limit of possible values

returned when a is fed into the following function ie.

 $lima - > - \infty F(a) = 0$

Which means that the lowest value for F(a) where a gets as close to $-\infty$ as possible (approaching from 0) is limited to 0. ie. Lower limit is 0. Can be used to define upper limits with $+\infty$ and limits for discrete variables by specifying their unique upper and lower bounds ie.

lima ->6 f(a)=1

where 0<=a<=6

Definitions, Properties, Rules and Laws

If $A \cap B \mathrel{!=} \emptyset$ then $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

 $P(A^{c})=1-P(A)$

The Multiplication Rule $P(A \cap B) = P(A|B)P(B)$

By **Dylan** (dylablo) cheatography.com/dylablo/ Not published yet. Last updated 29th September, 2018. Page 1 of 4.

The	Given disjoint events B1,B2,,Bm such that
Law of	υ ^m i=1 Bi = Ω
Total	(ie. The union of all events B1 through Bm is the same as the
Probabi	entire sample space)
lity	Then the probability of a random/arbitrary event A is expressed
-	as
	$P(A) = \sum^{m} i=1 P(A Bi)P(Bi)$
	(ie. The sum of probabilities of all events Bi where A occurs)
Bayes'	Given disjoint events B1,B2,,Bm and
Rule	$\cup^{m}i=1$ Bi = Ω
	(ie. The union of all events B1 through Bm is the same as the
	entire sample space)
	Then the conditional probability of Bi, given that a
	random/arbitrary event A occurs is
	$P(Bi A) = P(A Bi)P(Bi)/\sum_{j=1}^{m} P(A Bj)P(Bj)$
	(ie. !!!VERIFY!!!THe probability of Bi given that A occurs is the
	calculated by dividing the the probabiltiy $P(A \cap B)$ <according td="" to<=""></according>
	the multiplication rule> by the sum of the probabilities of A
	intersecting all other events in the sample space <according td="" to<=""></according>
	the multiplication rules)>

Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Foundation of Statistics Sec. 1 & 2 under Shirin Cheat Sheet by Dylan (dylablo) via cheatography.com/68322/cs/17214/

Definitions, Propertie	es, Rules and Laws (cont)	Probability/Statistics & Set Notation		
Properties of the Probability Mass Function aka pmf	All probabilities are positive: $fx(x) \ge 0$. Any event in the distribution (e.g. "scoring between	P(A)	Probability of event A occuring. (Number of ways event A can occur / Number of total outcomes possible))	
	20 and 30") has a probability of happening of between 0 and 1 (e.g. 0% and 100%).	Ω	Sample Space/Universe. $P(\Omega)=1$	
		Ø	Empty/Null set	
	The sum of all probabilities is 100% (i.e. 1 as a	P(A∩B)	Probability of A Intersection B	
	decimal): $\Sigma fx(x) = 1$. An individual probability is found by adding up the	Disjoint/Independen t/Mutually Exclusive	If $A \cap B = \varnothing$ then disjoint/independent of each other	
Properties of the Cumulative	 x-values in event A. P(X E A)=Σx∈Af(X) 1. For a<=b then F(A)<=F(b) ie. if a<=b then the cdf of a<=the cdf of b. 	P(AuB)	If disjoint/independent of one another $P(A \cup B) = P(A) + P(B)$	
Distribution Function aka cdf	2. $F(a)$ is a probability $0 \le F(a) \le 1$, and		If not disjoint $P(A \cup B) = P(A) + P(B) - P(A \cap B)$	
	$\begin{split} &\lim_{a \to +\infty} F(a) = 1 \\ &\lim_{a \to -\infty} F(a) = 0 \\ &\text{ie. } F(a) \text{ will never return a result bigger than 1 or smaller than 0.} \\ &3. F \text{ is right-continuous} \\ &\lim_{b \to 0} F(a+b) = F(a). \end{split}$	Ac	A complement. Everything outside A. $P(A^c) = 1 - P(A)$	
		A∈B / A∉B	A is an element of B / A is not an element of B	
		$A:A\in B$	A such that A is an element of B	
		n! aka Permutations	Counting method where ORDER matters. $n! = n(n-1)(n-2)(n-k+1)$ where k = sample size	
		(ⁿ k) aka Combinations	Counting method where order does not matter. (ⁿ k) = n!/k!(n-k)!)	
	*a<=b implies that the event {X<=a} is contained(subset of) the event {X<=b}	P(A B) aka Conditional	The Probability of A happening, given that B occurs.	
Properties of Expectation aka E(X)	Properties of $E(aX) = aE(X) \forall a is a constant$ ProbabilityExpectation aka $E(XY) = E(X)E(Y)$ when X and Y are independentProbability		If A and B are disjoint/independent/mutually exclusive then $P(A B)=P(A)$ as B has no effect on A.	
	$\begin{split} & E(X\!+\!Y) = E(X)\!+\!E(Y) \text{ linearity} \\ & E[\Sigma\mathtt{i}\!=\!1^nX\mathtt{i}] = \Sigma\mathtt{i}\!=\!1^nE[X\mathtt{i}] \end{split}$		If A and B are dependent ie. B has an effect on the chances of A the P(A B) = P(A \cap B)/P(B)	
Properties of Variance aka V(X)	Vara(aX) = $a^{2}Var(X) \forall a \text{ is a constant}$ Var(a+X) = Var(X) $\forall a \text{ is a constant}$		P(A B)+P(A ^c B)=1	

С

By **Dylan** (dylablo) cheatography.com/dylablo/ Not published yet. Last updated 29th September, 2018. Page 2 of 4. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Foundation of Statistics Sec. 1 & 2 under Shirin Cheat Sheet by Dylan (dylablo) via cheatography.com/68322/cs/17214/

Probability/Statistics & Set Notation (cont)			Probability/Statistics & Set Notation (cont)		
P(Bi A)P(A) = P(A Bi)P(Bi)	Proven by the combination of Bayes probability applied to P(A)	' rule and Law of total	Discrete Random Variable	Any function X: $\Omega \rightarrow \mathbb{R}$ that takes on some value. eg. X could be S=sum or M=max ran on a sample space, getting the sum/max of each experiment outcome and	
Independence of more than 2 events	Events A1,A2,,Am are independent $P(\cap^m i=1Ai) = \prod^m i=1P(Ai)$ (ie. They are independent events if their intersections are equal to the prindividual probabilities) A and B are independent. B and C are independent to the prindividual probabilities and C are independent. B and C are independent to the prindividual probabilities and C are independent. B and C are independent to the prindividual probabilities are prior to the p	the probability of all of roduct of all of their are independent. This	Probability Mass Function aka pmf	constructing a new sample space out of it. The pmf of some discrete rv X. Essentially creating a table/graph displaying all the probabilities of all possible values our discrete rv can be. Please refer to "Properties of the Probability Mass Function aka PMF for more details."Explained here http://www.statisticshowto.com/probability-mass-function- pmf/	
Random variable aka. rv	 mean they must be dependent. Any variable whose value is not known prior to the experiment and are subject to chance aka. Variability aka. Change. Has an associated probability aka. mass An rv is a type of mapping function over the whole sample space and is associated with measure theory. ie. An rv can transform the sample space. 		Cumulative Distribution Function aka cdf	The cdf of some discrete rv can be used to determine the probability above, below and between values occuring. Please refer to "Properties of the Cumulative Distribution Function aka CDF for more details." Explained here http://www.statisticshowto.com/cumulative-distribution-function/	
			Continuous	An infinite number of possible values.	
Discrete	There is a set number of outcomes				
	By Dylan (dylablo)Not published yet.cheatography.com/dylablo/Last updated 29th SepPage 3 of 4.		ember, 2018.	Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com	

Foundation of Statistics Sec. 1 & 2 under Shirin Cheat Sheet by Dylan (dylablo) via cheatography.com/68322/cs/17214/

Probability/Statistics & Set Notation (cont)			Probability/Statistics & Set Notation (cont)	
Continuous Random Variables	Is a function X: $\Omega \rightarrow \mathbb{R}$ that takes on any value Mass/Associated probability no longer consider possible value of X instead consider the like $X \in (a,b)$ for a <b.< th=""><th>sidered for each</th><th>Variance aka Var(X)</th><th>A method of measuring how far the actual value of a rv may be from the expected value. Given a discrete variable X the formula is $Var(X)=\Sigma xi \in \Omega x^{2}i p(xi) - (\Sigma xi \in \Omega xi p(xi))^{2}$</th></b.<>	sidered for each	Variance aka Var(X)	A method of measuring how far the actual value of a rv may be from the expected value. Given a discrete variable X the formula is $Var(X)=\Sigma xi \in \Omega x^{2}i p(xi) - (\Sigma xi \in \Omega xi p(xi))^{2}$
Probability Density Function aka pdf	Pdf on a continuous rv f(x) of X is an integrable function such that $P(a \le X \le b) = \int^{b} a f(x) dx$ ie. it is the area under the cure between points a and b. Therefore it is the probability of a range of values occuring s.t. conditions on f $f(x) >= 0 \forall x \in \Omega$			Or given a continuous rv use the formula $Var(X)=\int_{\Omega} x^2 f(x)dx - (\int_{\Omega} x f(x)dx)^2$ In other words we sum up (the squared value's multiplied by their individual probabilities) and finally deduct the the squared expected value.
	$\int^{\infty} -\infty f(x)dx=1$ ie. the complete area under the curve contains all outcomes. This is defined by the formula $F(x)=\int^{x} -\infty f(u)du = P(X<=x)$	Standard Deviation	Another method similar to variance about looking at how far distribution goes from the mean ie. The actual value vs the expected value. Simply calculated with the sqrt(Var(X)). Benefit of this is that it is expressed in the same unit that X is expressed in rather than the squared as variance is.	
Expectation aka. E(x)	The expected value of a random variable T the formula when our rv is discrete $E(X) = \Sigma \pm i \in \Omega \times i p(xi)$ and the following formula when the rv is co $E(X)=\int \Omega \times f(x) dx$ To make this easier to understand The exp simply the mean and is calculated as the su possible value multiplied by it's independent The sum of weighted values to probabilities	ntinuous bected value is um of (each nt probability) ie		
	By Dylan (dylablo) Not	t published yet.		Sponsored by ApolloPad.com

By **Dylan** (dylablo) cheatography.com/dylablo/ Not published yet. Last updated 29th September, 2018. Page 4 of 4.

Everyone has a novel in them. Finish Yours! https://apollopad.com