
Rails 5 Security Cheat Sheet
by dwapi via cheatography.com/43665/cs/13083/

SQL Injection

Defi nit ion:

SQL injection is the placement of malicious code in SQL statem ents, via
web page input.

Exam ple:

Malicious user inputs SQL code as vaue for text input

Threat Level (Mediu m-H igh):

Active Record, in most cases, protects against SQL Injection by default,
however, there are ways in which it can be used insecurely which can
lead to SQL Injection.

Rails Fix:

Avoid using find_by_sql
Do not pass params directly into queries use '?' vars
Explicitly force IDs to_i for queries
Use " Strong Parame ter s" in Controller

Pote ntially Dangerous Methods:

Calcul ations (average, sum, maximum...){{nl}exists?(id)
delete_all / destroy_all
find_by(id)
https: //r ail s-s qli.org/

This is one of the most common web hacking techniques.
Malicious SQL could destroy your database.

Cross-Site Scripting (XSS)

Defi nit ion:

XSS is a code injection attack that allows an attacker to execute
malicious JavaScript in another user's browser The only way for the
attacker to run his malicious JavaScript in the victim's browser is to
inject it into one of the pages that the victim downloads from the
website.

Pers istent XSS

Malicious JS has been saved to DB by attacker. Is executed when
victim loads page

Refl ected XSS

In a reflected XSS attack, the malicious string is part of the victim's
request to the website. The website then includes this malicious string
in the response sent back to the user. Think Phishing.

Threat Level (High for Persistent XSS)

Data must be sanitized before being saved to DB

Rails Fix:

Data must be sanitized before being saved to DB

https: //e xce ss- xss.com/

Session Hijacking

Defi nit ion:

Stealing a user's session ID lets an attacker use the web applic ation in
the victim's name.

Exam ple:

Man in the middle sniffs out valid session id

Threat Level (Mediu m-L ow):

Man in the middle attack

Rails Fix:

Expire Sessions
Use https to thwart man-in -th e-m iddle attacks
Call reset_ session when logging users in and out to avoid session
fixation.
Sanitize user input to avoid XSS.
Use Devise (it will automa tically expire sessions on sign in and sign
out)

Rails Fix (Enabled by default)

Encryp ted Coo kie Store: Session is encrypted before being stored in
cookie (confi g/s ecr ets.yml)

Session Fixati on:

Using a fixed/ per mament session id. Call reset_ session after
login/ logout to prevent this.

Cross-Site Request Forgery (CSRF) (Built In)

Defi nit ion:

An attack that forces an end user to execute unwanted actions on a
web applic ation in which they're currently authen tic ated.

Exam ple:

Phishing example. User clicks on link to page that looks like legit site.
Victim is tricked into submitting a malicious request. It inherits the
identity and privileges of the victim to perform an undesired function on
the victim's behalf.

Threat Level (LOW):

Modern browsers enforce same-o rigin policy restri ctions on scripts.

Rails Fix (Enabled by default)

Rails protects against CSRF attacks by default by including a token
named authen tic ity _token within HTML responses
That token is also stored in user session and they are compared when
Request is made.
To confirm it's enabled verify protec t_f rom _fo rgery is in
Applic ati onC ont roller

By dwapi
cheatography.com/dwapi/

Not published yet.
Last updated 10th October, 2017.
Page 1 of 2.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/dwapi/
http://www.cheatography.com/dwapi/cheat-sheets/rails-5-security
https://rails-sqli.org/
https://excess-xss.com/
http://www.cheatography.com/dwapi/
http://crosswordcheats.com

Rails 5 Security Cheat Sheet
by dwapi via cheatography.com/43665/cs/13083/

Cross-Site Request Forgery (CSRF) (Built In) (cont)

Deve loper Fix:

Use GET and POST properly (CSRF is on POST only)

Develop Respon sibly

Filter params saved in logs

config.fi lte r_p ara meters << :password, :credi t_card

Do not Redirect based on a URL in the Request

BAD: http://www.example.com/site/redirect?to=www.attacker.com
redirect_to(params[:to])

Think through file uploads

Check extens ions. Beware execut eable files

Restrict File Downlo ads

Make sure users cannot download arbitrary files.
send_file('/var/www/uploads/' + params [:f ile name])

Brute Force login attacks

Think about using a CAPTCHA

By dwapi
cheatography.com/dwapi/

Not published yet.
Last updated 10th October, 2017.
Page 2 of 2.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/dwapi/
http://www.cheatography.com/dwapi/cheat-sheets/rails-5-security
http://www.example.com/site/redirect?to=www.attacker.com
redirect_to(params[:to])
http://www.cheatography.com/dwapi/
http://crosswordcheats.com

	Rails 5 Security Cheat Sheet - Page 1
	SQL Injection
	Session Hijacking
	Cross-Site Scripting (XSS)
	Cross-Site Request Forgery (CSRF) (Built In)

	Rails 5 Security Cheat Sheet - Page 2
	Develop Responsibly

