
ES6 / ECMAScript 2015 / ES2015 Quick Reference Cheat Sheet
by dwapi via cheatography.com/43665/cs/13100/

Hoisting

//var declaration example

(funct ion() {
 var foo = 1;
 con sol e.l og(foo + " " + bar);
 var bar = 2;
})();

// Alerts "1 undefi ned " instead of throwing an error.
// It's aware of bar b/c the declar ation was hoisted to
top of function.

// So no error, but the value is undefined until after

the alert.

//function example

foo();

function foo() {

 ale rt(" Hel lo! ");
}

// Same as above, the function declar ation is hoisted
above the call();

Hoisting is JavaSc ript's default behavior of moving all var and function
declar ations to the top of the current scope (to the top of the current script
or the current function).

Functions

// Arrow Function

setTim eout(() => { consol e.l og(‘de layed’) }, 1000)
// Scoped Functions

{

 let cue = 'Luke, I am your father'
 con sol e.l og(cue)
}

>'Luke, I am your father'

// Scoped Function Equivalent with Immedi ately Invoked
Function Expres sions (IIFE)
(function () {

var cue = 'Luke, I am your father'

consol e.l og(cue) // 'Luke, I am –
}())

consol e.l og(cue) // Reference Error
// Default Params!!

function test(num = 1) { consol e.l og(num) }

Promises

// Promise itself has three states: Pending, Fulfilled

, Rejected

let example = new Promis e((res olve, reject) => {
 req ues t.g et(url, (error, response, body) => {
 if (body) {
 res olv e(J SON.pa rse (bo dy)); // fulfilled
 } else {
 let reason = new Error('There wan an error');
 rej ect (re ason); // reject
 }
 })
}).the n((val) => consol e.l og(" ful fil led :", val))
 .ca tch ((err) => consol e.l og(" rej ect ed: ", err));

// Run multiple promises in parallel

Promis e.all([
 pro mise1, promise2, promise3
]).then(() => {

 // all tasks are finished
})

If you want to use Promises for recurring values or events, there is a
better mechan ism /pa ttern for this scenario called streams.

Let vs Var

let variables are limited in scope to the
block, statement, or expression on
which it is used

var defines variables globally, or
locally to an entire function
regardless of block scope

Variables declared with let or const do
not get hoisted

variables defined with var DO get
hoisted

Can NOT be re-decalred.
let a = 5;
let a =6; // Syntax Error: redecl aration

CAN be re-decalred.
var a = 5;
var a = 6; // no error. a=6

let is more perfor mant, and better for Garbage Collection

Support: Severs ide =Ev ery where.
Browsers IE11+ Android 56+ (altho
you can use Babel transp iler)

Universal support

Hoisting is a bit of a quirk in JS. let behaves more like variable
declar ations in most other langs
Douglas Crockford advises to always use let.

By dwapi
cheatography.com/dwapi/

Not published yet.
Last updated 17th October, 2017.
Page 1 of 2.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/dwapi/
http://www.cheatography.com/dwapi/cheat-sheets/es6-ecmascript-2015-es2015-quick-reference
http://www.cheatography.com/dwapi/
http://crosswordcheats.com

ES6 / ECMAScript 2015 / ES2015 Quick Reference Cheat Sheet
by dwapi via cheatography.com/43665/cs/13100/

Maps and Sets

What are Maps?

Basically a Object /hash with some advant ages.

Diff erence between Maps and Objects:

An Object has a prototype, so there are default keys in the map
Maps preserve K-V in order they were added -- allows for iteration
Keys in Objects are treated like Strings Object.ke ys(myHash) returns a
bunch of strings. They can be anything in a Map.

What is a WeakMap?

A Map where the keys are weak. Meaning if a key is deleted the value
will be GC'd

What is a Set?

Highly performant array that preserves order of insertion, but does not
index.

Other New Features

Template Literals My dog is ${age} years old

Default Params function(greeti ng= 'Howdy'){ consol e.l og(gre eting) }

Object literals myHash = {color, size} // same as {color: color, size:
size}

Spread Operator [1, 2, ...more] or list.p ush (...[3, 4]) or new Date(...
[201 5,8,1])

Generator
Functi on(*)

function *foo() {} //These can be paused & resumed
later????

const variable
type

Block scoped, immutable refe rence (vals in arrays
can change)

Symbol variable
type

Immuteable (Unclear advantage of these over hash
obj)

Classes, Inheri tance, Setters, Getters

class Rectangle extends Shape {

 con str uct or(id, x, y, w, h) {
 sup er(id, x, y)
 thi s.width = w
 thi s.h eight = h
 }
 // Getter and setter
 set width(w) {
 thi s._ width = w
 }
 get width() {

Classes, Inheri tance, Setters, Getters (cont)

 return this._ width
 }
}

class Circle extends Shape {

 con str uct or(id, x, y, radius) {
 sup er(id, x, y)
 thi s.r adius = radius
 }
 do_a(x) {
 let a = 12;
 sup er.d o_a(x + a);
 }
 static do_b() { ...
 }
}

Circle.do_b()

Spread Operator and Destru cturing

> const [cat, dog, ...fish] = [‘schroedinger’,

‘Laika’, ‘Nemo’, ‘Dori’]

> fish // -> [‘Nemo’, ‘Dori’]

> cat // -> [‘schr oed inger’]
> let arr = [1, 2, 3]

> [...arr, 4, 5, 6]

> [1, 2, 3, 4, 5, 6]

By dwapi
cheatography.com/dwapi/

Not published yet.
Last updated 17th October, 2017.
Page 2 of 2.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/dwapi/
http://www.cheatography.com/dwapi/cheat-sheets/es6-ecmascript-2015-es2015-quick-reference
http://www.cheatography.com/dwapi/
http://crosswordcheats.com

	ES6 / ECMAScript 2015 / ES2015 Quick Reference Cheat Sheet - Page 1
	Hoisting
	Promises
	Functions
	Let vs Var

	ES6 / ECMAScript 2015 / ES2015 Quick Reference Cheat Sheet - Page 2
	Maps and Sets
	Other New Features
	Spread Operator and Destructuring
	Classes, Inheritance, Setters, Getters

