Cheatography

ES6 / ECMAScript 2015 / ES2015 Quick Reference Cheat Sheet
by dwapi via cheatography.com/43665/cs/13100/

//var declaration example

(function() {
var foo = 1;
console.log (foo + " " + bar);
var bar = 2;

1) O
// Alerts "1 undefined" instead of throwing an error.
// It's aware of bar b/c the declaration was hoisted to
top of function.
// So no error, but the value is undefined until after
the alert.
//function example
foo() ;
function foo() {
alert ("Hello!") ;
}
// Same as above, the function declaration is hoisted

above the call();

Hoisting is JavaScript's default behavior of moving all var and function
declarations to the top of the current scope (to the top of the current script
or the current function).

// Promise itself has three states: Pending, Fulfilled

, Rejected
let example = new Promise((resolve, reject) => {
request.get (url, (error, response, body) => {

if (body) {
resolve (JSON.parse (body)) ; // fulfilled
} else {

let reason = new Error ('There wan an error');

reject (reason); // reject
}
})
}).then((val) => console.log("fulfilled:", wval))
.catch((err) => console.log("rejected:", err));

// Run multiple promises in parallel
Promise.all ([

promisel, promise2, promise3
1) .then(() => {

// all tasks are finished

1)

// Arrow Function
setTimeout (() => { console.log(’delayed’) }, 1000)
// Scoped Functions
{
let cue = 'Luke, I am your father'
console.log (cue)
}
>'Tuke, I am your father'
// Scoped Function Equivalent with Immediately Invoked
Function Expressions (IIFE)
(function () {
var cue = 'Luke, I am your father'
console.log(cue) // 'Luke, I am -
}0))
console.log(cue) // Reference Error
// Default Params!!

function test(num = 1) { console.log(num) }

If you want to use Promises for recurring values or events, there is a
better mechanism/pattern for this scenario called streams.

let variables are limited in scope to the var defines variables globally, or
block, statement, or expression on locally to an entire function

which it is used regardless of block scope

Variables declared with let or const do variables defined with var DO get

not get hoisted hoisted

Can NOT be re-decalred.
leta=5;

CAN be re-decalred.
vara = 5;

let a =6; // SyntaxError: redeclaration var a = 6; // no error. a=6

let is more performant, and better for Garbage Collection

Support: Severside=Everywhere.
Browsers IE11+ Android 56+ (altho
you can use Babel transpiler)

Universal support

Hoisting is a bit of a quirk in JS. let behaves more like variable
declarations in most other langs
Douglas Crockford advises to always use let.

By dwapi Not published yet.
cheatography.com/dwapi/

Page 1 of 2.

Last updated 17th October, 2017.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/dwapi/
http://www.cheatography.com/dwapi/cheat-sheets/es6-ecmascript-2015-es2015-quick-reference
http://www.cheatography.com/dwapi/
https://readability-score.com

ES6 / ECMAScript 2015 / ES2015 Quick Reference Cheat Sheet
by dwapi via cheatography.com/43665/cs/13100/

Maps and Sets Classes, Inheritance, Setters, Getters (cont)

What are Maps? return this._width

Cheatography

| Basically a Object/hash with some advantages. }

}
Difference between Maps and Obijects:
class Circle extends Shape {

An Object has a prototype, so there are default keys in the map constructor (id, x, y, radius) {

Maps preserve K-V in order they were added -- allows for iteration
.) .)) super (id, x, y)
Keys in Objects are treated like Strings Object.keys(myHash) returns a

this.radius = radius

}
do_a (x) {

bunch of strings. They can be anything in a Map.
What is a WeakMap?

A Map where the keys are weak. Meaning if a key is deleted the value

let a = 12;
will be GC'd
super.do_a (x + a);
What is a Set? }
Highly performant array that preserves order of insertion, but does not static do b () {
index. }

}
Other New Features Circle.do_b ()

Template Literals My dog is ${age} years old
Spread Operator and Destructuring

Default Params function(greeting="Howdy"){ console.log(greeting) }

Object literals myHash = {color, size} // same as {color: color, size: > comst [cat, dog, ...fish | = ['schroedinger’,
size} ‘Laika’, ‘Nemo’, ‘Dori’]

Spread Operator [1, 2, ...more] or list.push(...[3, 4]) or new Date(... > fish // -> ['Nemo’, 'Dori’]
[2015,8,1]) > cat // -> [’schroedinger’]

Generator function *foo() {} /These can be paused & resumed > let arr = 1, 2, 31

Function(*) later???? > [...arr, 4, 5, 6]

const variable Block scoped, immutable reference (vals in arrays > [1.2, 3, 4,5, 6]

type can change)

Symbol variable Immuteable (Unclear advantage of these over hash

type obj)

Classes, Inheritance, Setters, Getters

class Rectangle extends Shape {
constructor (id, x, y, w, h) {
super (id, x, y)
this.width = w
this.height = h
}
// Getter and setter
set width(w) {
this. width = w
}

get width() {

By dwapi Not published yet. Sponsored by Readability-Score.com
cheatography.com/dwapi/ Last updated 17th October, 2017. Measure your website readability!
Page 2 of 2. https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/dwapi/
http://www.cheatography.com/dwapi/cheat-sheets/es6-ecmascript-2015-es2015-quick-reference
http://www.cheatography.com/dwapi/
https://readability-score.com

	ES6 / ECMAScript 2015 / ES2015 Quick Reference Cheat Sheet - Page 1
	Hoisting
	Promises
	Functions
	Let vs Var

	ES6 / ECMAScript 2015 / ES2015 Quick Reference Cheat Sheet - Page 2
	Maps and Sets
	Other New Features
	Spread Operator and Destru­cturing
	Classes, Inheri­tance, Setters, Getters

