Cheatography

General Chemistry - MOOC Cheat Sheet by dswelam via cheatography.com/122607/cs/22839/

Gas Laws & Conditions		
760 Torrs = 760 mmHg = 1 atm		
P = pressure V = volume		
T = temperature n = moles		
Boyle's Law (P1V): P1V1 = P2V2		
Charles' Law (T$(V_1/T_1) = (V_2/T_2)$		
Avogadro's Law (M Υ V): (V ₁ /n ₁) = (V ₂ /n ₂)		
Static Conditions:		
<pre>PV = nRT R = 0.0821 L*atm/mol*K</pre>		
note: units should be L, K, atm,		
& mol		
Dalton's Law Pressure:		
Ptotal = Pgas1 + Pgas2 + Pgas3 + P		

Types of Branches

Alkyl Branches: named based on # of		
carbon contained		
have a -yl ending		
CH₃ methyl branch		
CH₂CH₃ ethyl branch		
CH2CH2CH3 propyl branch		
Halogen Branches: from group 17 of		
periodic table		
F - fluoro		
Cl - chloro		
Br - bromo		
I - iodo		

Units of Conversion

100 centimeters	= 1 meter
1,000 millimeters	= 1 meter
10,000 micrometers	= 1 meter
1,000,000 nanometers	= 1 meter
1,000 meters	= 1 kilometer

 $= (m/v) g/mL^3$

Density Equation

Density

Energ

Energy			
4184J	= 4.184kJ	= 1 kcal	=1000 cal
Kinetic Energy	= (1/2) mv	/ ²	
Kelvin	$= C^{0} + 273$	3.15	
Specific Heat (q)	= ms∆T	(∆ chan temp.)	ge in
Fats	= 9 kcal/g		
Carbs	= 4 kcal/g		
Proteins	= 4 kcal/g		
Liquid → Solid	= freezing		
Solid → Gas	= sublima	tion	
Gas → Liquid	= condens	sation	
Solid—→ Liquid	= melting		
Liquid → Gas	= depositi	on	
Gas \rightarrow Solid	= vaporiza	ation	

Molarity & Concentration

Molarity = moles \div L Dilution: M₁V₁ = M₂V₂

Acids & Bases

Arrhenius	increase H ⁺ / increases
Acids	protons / increases H_3O^+
Arrhenius	increase OH ⁻ (hydroxide)
Bases	

Acids & Bases (cont)

Simple	H + element off periodic table
Acids	(e.g. HCI)
Oxoacid	H + polyatomic ion (e.g. HNO3)

Naming Acids: Drop the ending in simple acids and add "-ic acid" ex: Hydrochloric Acid If the polyatomic ion ends in "-ite", change to "-ous acid" ex: Chlorous Acid Note: Strong acids and strong bases dissociate completely.

pH & Relative Acidity

Calculating Hydroxide: 1×10⁻¹⁴=[H₃O⁺]-[OH⁻]

pH Equation: pH = - log[H⁺]

Finding pH from Hydroxide Equation: solve for H_3O^+ , then solve for pH.

Intermolecular Attractive Forces

Hydrogen Bonding - Strongest of the three. Requires an H to be directly bonded to an N, O, or F within a molecule. Dipole-Dipole - During the next two sections of this module we'll learn to ID molecules with this IMF. Molecules with dipole-dipole forces have a permanent positive and negative "sidedness" or polarity.

Dispersion Forces - Weakest of the three. All molecules have dispersion forces, but they're the primary (strongest) forces for nonpolar molecules.

IMF Strength: (lowest) D ➡ D-D ➡ HB
(highest)

Reactions of Alkenes

Published 29th July, 2021. Last updated 29th July, 2021. Page 1 of 2. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Cheatography

General Chemistry - MOOC Cheat Sheet by dswelam via cheatography.com/122607/cs/22839/

Calculating Abundance

(mass x abundance %) + (mass x abundance %)

Note:abundance must be calculated by a decimal (moving decimal place two times to the front)

Molecular Prefixes 1 = mono

2	=	di
3	=	tri
4	=	tetra
5	=	penta
6	=	hexa
7	=	hepta
8	=	octa
9	=	nona
10	=	deca

Note: Ending of last element is replaced by -ide.

Example: CO_2 - carbon dioxide SF_6 - sulfur hexafluoride

Percent Yield

PY = (Actual Yield (g) x 100) ÷ (Theoretical Yield (g))

Ionic Compounds
Acetate \rightarrow (C ₃ H ₃ O ₂) ⁻¹
Nitrate \longrightarrow (NO ₃) ⁻¹
Chlorate \rightarrow (CIO ₃) ⁻¹
Chlorate \longrightarrow (ClO ₄) ⁻¹
Ammonium \longrightarrow (NH ₄) ⁺¹
Hydronium \longrightarrow (H ₃ O) ⁻¹
Carbonate \longrightarrow (CO ₃) ⁻²
Phosphate \longrightarrow (PO ₄) ⁻³
Hydroxide \longrightarrow (OH) ⁻¹

Ionic Compounds (cont)

Sulfate \rightarrow	(SO4) ⁻²
-----------------------	---------------------

Contains : a metal and/or a polyatomic ion Note: Cations come first (+) and Anions come last (-) Ion Charges (exceptions): Al \rightarrow +3 Zn \rightarrow +2

Writing Formulas: Cation keeps the name off periodic table while anion ends in -ide.

Hydrocarbon Alkanes

Name	Molecular Formul
011300	646
propase	CaHe
butane	GHa
pentane	C(Hz)
hexane	GHu
heptane	CPHs
octane	GHa
000206	Cellin
decene	Calific

Functional Groups List

Alcohol	Aldehyde	Ketone	Alkene
R-OH	R.C.H	0 R ^C R	_ C=C
Ether	Amine	Alkyne	
R-O-R	R-NH2	. c≡c	D = Dispersion
Phenol	Amide	Ester	D-D = Dipole-dipole
, () ²⁴⁴	R NH2	R OR	HB = Hydrogen Bonding
Thiol	Phenyl	Carboxylic Acid	
R-SH	\mathcal{O}	R OH	

Relating IMF Strength

As IMF strength increases:

① Boiling point (B.P.) will require higher temperature to boil.

② Melting point (M.P.) will require higher temperature to melt.

③ Solubility in water will increase (like dissolves like, and water exhibits H-

bonding, a strong IMF)

④ Volatility, how readily a substance will go to the gas phase, will decrease.

Types of Reactions		
Decomposition Reaction	ex: $2HgO(s) \rightarrow 2Hg(l)+-O_2(g)$	
Combustion	ex: $C_3H_7(g)+5O_2(g) \rightarrow -$	
Reaction	$3CO_2(g)+4H_2O(g)$	
Single-Repla-	ex: Zn(s)+2HCl(aq)→-	
cement Reaction	ZnCl₂(aq)+H₂(g)	

Published 29th July, 2021. Last updated 29th July, 2021. Page 2 of 2.

Types of Reactions (cont)

Double-Repla-	ex: Na ₂ S(aq)+2HCl(a-
cement	$q) \!\rightarrow\! 2NaCl(aq) \!+\! H_2S(g)$
Reaction	
Combination	ex: 2Na(s)+Cl₂(g)→2-
Reaction	NaCl(s)

Note: $\Delta \rightarrow$ reaction is heated up

 $h\lambda \longrightarrow$ energy is added in form of light

Strong Acids		
HCI	HBr	HClO₃
HI	HNO₃	HCIO ₄
H ₂ SO ₄		

Notes: Molecular substances act as nonelectrolytes. Soluble lonic substances make for strong electrolytes.

Balanced equations with double-sided arrows (\leftrightarrow) rules an electrolyte is weak because it dissociates and recombines.

Conversion Roadmap

mass \rightarrow moles (use molar mass)

moles \rightarrow molecules (use Avogadro's number)

molecules \rightarrow atoms (use chemical formula)

Note: Avogadro's Number 6.022x10²³

Stoichiometry

Step #1: Balance Equation Step #2: Given mass, convert with moles Step #3: Perform Stoichiometry, convert back to mass at the end if needed.

Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

By **dswelam** cheatography.com/dswelam/

C ch