Cheatography

General Chemistry - MOOC Cheat Sheet

by dswelam via cheatography.com/122607/cs/22839/

Gas Laws & Conditions

760 Torrs = 760 mmHg = 1 atm P = pressure V = volume T = temperature n = moles Boyle's Law (P $\mathbb{1}V$): $P_1V_1 = P_2V_2$ Charles' Law (T $\mathbb{1}V$): $(V_1/T_1) = (V_2/T_2)$ Avogadro's Law (M $\mathbb{1}V$): $(V_1/n_1) = (V_2/n_2)$ Static Conditions:

PV = nRT R = 0.0821 L*atm/mol*K
note: units should be L, K, atm,
& mol

Dalton's Law Pressure:

Ptotal = Pgas1 + Pgas2 + Pgas3 + P...

Types of Branches

Alkyl Branches: named based on # of carbon contained

have a -yl ending CH₃ methyl branch CH₂CH₃ ethyl branch CH₂CH₂CH₃ propyl branch

Halogen Branches: from group 17 of

F - fluoro
CI - chloro
Br - bromo
I - iodo

periodic table

Units of Conversion

100 centimeters = 1 meter

1,000 millimeters = 1 meter

10,000 micrometers = 1 meter

1,000,000 nanometers = 1 meter

1,000 meters = 1 kilometer

Density Equation

Density = $(m/v) g/mL^3$

Energy			
4184J	=	= 1	=1000
	4.184kJ	kcal	cal
Kinetic Energy	= (1/2) m	v ²	
Kelvin	$= C^{0} + 273.15$		
Specific Heat (q)	= ms∆T	(∆ char temp.)	nge in
Fats	= 9 kcal/g	9	
Carbs	= 4 kcal/g	9	
Proteins	= 4 kcal/g	9	
$\begin{array}{c} \text{Liquid} \longrightarrow \\ \text{Solid} \end{array}$	= freezin	g	
Solid → Gas	= sublima	ation	
Gas → Liquid	= conden	sation	
Solid→ Liquid	= melting		
Liquid → Gas	= deposit	ion	
Gas → Solid	= vaporiz	ation	

Molarity & Concentration

Molarity = moles ÷ L

Dilution: $M_1V_1 = M_2V_2$

Acids & Bases

Arrhenius increase H+ / increases
Acids protons / increases H₃O+
Arrhenius increase OH⁻ (hydroxide)
Bases

Acids & Bases (cont)

Simple H + element off periodic table Acids (e.g. HCI)

Oxoacid H + polyatomic ion (e.g. HNO₃)

Naming Acids: Drop the ending in simple acids and add "-ic acid" ex: Hydrochloric Acid

If the polyatomic ion ends in "-ite", change to "-ous acid" ex: Chlorous Acid

Note: Strong acids and strong bases dissociate completely.

pH & Relative Acidity

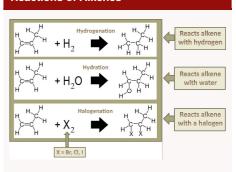
Calculating Hydroxide: 1x10⁻¹⁴=[H₃O⁺]-

pH Equation: pH = - log[H⁺]

Finding pH from Hydroxide Equation:

solve for H₃O⁺, then solve for pH.

Intermolecular Attractive Forces


Hydrogen Bonding - Strongest of the three. Requires an H to be directly bonded to an N, O, or F within a molecule.

Dipole-Dipole - During the next two sections of this module we'll learn to ID molecules with this IMF. Molecules with dipole-dipole forces have a permanent positive and negative "sidedness" or polarity.

Dispersion Forces - Weakest of the three. All molecules have dispersion forces, but they're the primary (strongest) forces for nonpolar molecules.

IMF Strength: (lowest) D → D-D → HB
(highest)

Reactions of Alkenes

Published 29th July, 2021. Last updated 29th July, 2021. Page 1 of 2. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

Cheatography

General Chemistry - MOOC Cheat Sheet

by dswelam via cheatography.com/122607/cs/22839/

Calculating Abundance

(mass x abundance %) + (mass x abundance %)

Note: abundance must be calculated by a decimal (moving decimal place two times to the front)

Molecular Prefixes

1 = mono

2 = di

3 = tri

4 = tetra

5 = penta

6 = hexa

7 = hepta

8 = octa

9 = nona

10 = deca

Note: Ending of last element is replaced by . .

Example: CO_2 - carbon dioxide SF_6 - sulfur hexafluoride

Percent Yield

PY = (Actual Yield (g) x 100) ÷ (Theoretical Yield (g))

Ionic Compounds

Acetate \longrightarrow $(C_3H_3O_2)^{-1}$

Nitrate \longrightarrow (NO₃)⁻¹

Chlorate → (ClO₃)⁻¹

Chlorate → (ClO₄)⁻¹

Ammonium \longrightarrow (NH₄)⁺¹

Hydronium \longrightarrow $(H_3O)^{-1}$

Carbonate \longrightarrow (CO₃)⁻²

Phosphate \longrightarrow (PO₄)⁻³

Hydroxide \longrightarrow (OH)⁻¹

Ionic Compounds (cont)

Sulfate \longrightarrow (SO₄)⁻²

Contains: a metal and/or a polyatomic ion Note: Cations come first (+) and Anions come last (-)

Ion Charges (exceptions): AI \longrightarrow +3 Zn \longrightarrow +2

Writing Formulas: Cation keeps the name off periodic table while anion ends in -ide.

Hydrocarbon Alkanes

Functional Groups List

Alcohol	Aldehyde	Ketone	Alkene
R-OH	R.C.H	. R.C.R	c=c
Ether	Amine	Alkyne	
R-O-R	R _{NH2}	_ c≡c	D = Dispersion
Phenol	Amide	Ester	D-D = Dipole-dipole
	R NH ₂	oo R ^C OR	HB = Hydrogen Bonding
Thiol	Phenyl	Carboxylic Acid	
R-SH	. 🔎	HE R OH	

Relating IMF Strength

As IMF strength increases:

① Boiling point (B.P.) will require higher temperature to boil.

② Melting point (M.P.) will require higher temperature to melt.

③ Solubility in water will increase (like dissolves like, and water exhibits Hbonding, a strong IMF)

Volatility, how readily a substance will go
to the gas phase, will decrease.

IMF ⋒ B.P. ⋒ M.P. ⋒ Solubility in Water ↓ Volatility

Types of Reactions

Decomposition	ex: 2HgO(s)→2Hg(l)+-
Reaction	$O_2(g)$
Combustion	ex: $C_3H_7(g)+5O_2(g) \rightarrow -$
Reaction	$3CO_2(g)+4H_2O(g)$
Single-Repla-	ex: $Zn(s)+2HCl(aq) \rightarrow -$
cement Reaction	$ZnCl_2(aq)+H_2(g)$

Types of Reactions (cont)

 $\begin{tabular}{lll} Double-Repla- & & \textbf{ex:} \ Na_2S(aq)+2HCl(a-cement & & q) \rightarrow 2NaCl(aq)+H_2S(g) \end{tabular}$

Reaction

Combination **ex:** $2Na(s)+Cl_2(g) \rightarrow 2-$

Reaction NaCl(s)

Note: Δ — reaction is heated up $h\lambda$ — energy is added in form of light

Strong Acids

HCI	HBr	HClO₃
HI	HNO₃	HCIO ₄

H₂SO₄

Notes: Molecular substances act as nonelectrolytes. Soluble Ionic substances make for strong electrolytes.

Balanced equations with double-sided arrows (←) rules an electrolyte is weak because it dissociates and recombines.

Conversion Roadmap

mass → moles (use molar mass)

moles \longrightarrow molecules (use Avogadro's number)

molecules \longrightarrow atoms (use chemical formula)

Note: Avogadro's Number 6.022x10²³

Stoichiometry

Step #1: Balance Equation

Step #2: Given mass, convert with moles

Step #3: Perform Stoichiometry, convert

back to mass at the end if needed.

ر ا

By dswelam

cheatography.com/dswelam/

Published 29th July, 2021.

Last updated 29th July, 2021. Page 2 of 2. Sponsored by **Readable.com**Measure your website readability!
https://readable.com