Hetroskedasticity	
consequenc e:	the statistics used to test hypotheses under Gauss-Markov assumptions are not valid in the presence of hetroskedasticity.
Valid estimator (any form)	$\Sigma\left[(x 1-x-)^{2} u^{\wedge} \mathrm{i} 2\right] /\left[S S T^{2} \mathrm{x}\right]$
	SSTx $=\sum(\mathrm{x} 1-\mathrm{x}-)^{2}$
Robust Standard error	$\operatorname{Var}^{\wedge}\left(\beta^{\wedge} \mathrm{j}\right)=\sum\left[r^{\wedge} \mathrm{ij} 2 \hat{u}^{2} \mathrm{i}\right] /\left[S S R^{2} \mathrm{j}\right]$

properties of OLS Matrix	
Sum of Squared Residuals	$\left(y-X \beta^{\wedge}\right)^{\prime}\left(y-X \beta^{\wedge}\right)$
	$y^{\prime} y-\beta^{\prime} X^{\prime} y-y^{\prime} X \beta^{\wedge}+\beta^{\wedge} X^{\prime} X \beta^{\wedge}$
	$y^{\prime} y-2 \beta^{\prime \prime} X^{\prime} y+\beta^{\prime \prime} X^{\prime} X \beta^{\wedge}$
Minimise the SSR	$\partial(S S R) / \partial \beta^{\wedge}=-2 X^{\prime} Y^{\prime}+2 X^{\prime} X \beta^{\wedge}=0$
from the minimum we get: "normal equation"	$\left(X^{\prime} X\right) \beta^{\wedge}=X^{\prime} y$
Solve for OLS estimator β^{\wedge}; by pre multiplying both sides by ($\mathrm{X}^{\prime} \mathrm{X}$)	$\left(X^{\prime} X\right)-1\left(X^{\prime} X\right) \beta^{\wedge}=\left(X^{\prime} X\right)-1 X^{\prime} y$
by definition, $\left(X^{\prime} X\right)-1\left(X^{\prime} X\right)=1$	$1 \beta^{\wedge}=\left(X^{\prime} X\right)-1 X^{\prime} y^{\prime}$
	$\beta^{\wedge}=\left(X^{\prime} X\right)-1 X^{\prime} y$
Properties	
The observed values of X are uncorrelated with the residuals.	$X^{\prime} \mathrm{e}=0$ implies that for every column xk of $\mathrm{X}, \mathrm{x}^{\prime} \mathrm{ke}=0$.
substitute in $y=X \beta^{\wedge}+e$ into normal equation	$\left(X^{\prime} X\right) \beta^{\wedge}=X^{\prime}\left(X \beta^{\wedge}+e\right)$
	$\left(X^{\prime} X\right) \beta^{\wedge}=\left(X^{\prime} X\right) \beta^{\wedge}+X^{\prime} e$
	$\mathrm{X}^{\prime} \mathrm{e}=0$

properties of OLS Matrix (cont)

The sum of the If there is a constant, then the first column in X (i.e. residuals is zero. X 1) will be a column of ones. This means that for the first element in the X'e vector (i.e. X11 $\times \mathrm{e} 1+\mathrm{X} 12 \times e 2$ $+\ldots+\mathrm{X} 1 \mathrm{n} \times \mathrm{en}$) to be zero, it must be the case that ei $=0$.

The sample mean $\quad e=\sum e \mathrm{i} / \mathrm{n}=0$. of the residuals is zero.

The regression hyperplane passes through the means of the observed values (X and y).

The predicted $\quad \wedge^{\prime} \mathrm{e}=\left(\mathrm{X} \beta^{\wedge}\right)^{\prime} \mathrm{e}=\mathrm{b}^{\prime} \mathrm{X}^{\prime} \mathrm{e}=0$
values of y are uncorrelated with the residuals.

The mean of the predicted Y's for the sample will equal the mean of the observed Y's : $y^{\wedge}-=y$ -

The Gauss-Markov	$\beta^{\wedge}=\left(X^{\prime} X\right)^{-1} X^{\prime} y=\left(X^{\prime} X\right)^{-1} X^{\prime}(X \beta+\varepsilon)$			
Theorem: Proof				
that β^{\wedge} is an				
unbiased				
estimator of β				
	$\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon$			
given $\left(X^{\prime} X\right)^{-1} X^{\prime} X$	$E\left[\beta^{\wedge}\right]=E[\beta]+E\left[\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon\right]=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} E[\varepsilon]$			
$=1$		\quad	where $E\left[X^{\prime} \varepsilon\right]=0$	$E\left[\beta^{\wedge}\right]=\beta$
:---	:---			
Proof that β^{\wedge} is a	$\beta^{\wedge}=\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \varepsilon$; where $\left(X^{\prime} X\right)^{-1} X^{\prime}=A$			
linear estimator				
of β.				

$\beta^{\wedge}=\beta+A \varepsilon \Rightarrow$ linear equation

By dsjac3

cheatography.com/dsjac3/

Not published yet.
Last updated 31st October, 2016.
Page 1 of 3 .

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com
Dummy Variables
Dummy/Binary =yes/no variables
Variables
$=$ take on the values 0 and 1 to identify the mutually exclusive classes of the explanatory variables.
= leads to regression models where the parameters have very natural interpretations

Given: wage $=\beta 0+\partial 0$ female $+\beta 1$ edu $+u$

	To solve for $\partial 0:$
	$\partial 0=E($ wage\|female,edu) $-E$ (wage\|male,edu)
	where level of education is the same

Test whether the two regression models are identical:

$$
\begin{aligned}
& \mathrm{H} 0: \beta 2=\beta 30 \\
& \mathrm{H} 1: \beta 2 \neq 0 \text { and/or } \beta 3 \neq 0 .
\end{aligned}
$$

Acceptance of H 0 indicates that only single model is necessary to explain the relationship.

Test is two models differ with respect to intercepts only and they have same slopes

$$
\begin{aligned}
& \mathrm{H} 0: \beta 3=0 \\
& \mathrm{H} 1: \beta 3 \neq 0 .
\end{aligned}
$$

Treating a quantitative variable as qualitative variable increases the complexity of the model.

The degrees of freedom for error are reduced.
Can effect the inferences if data set is small

Inference	
Normality	zero mean and Variance
Assumption:	
	$\operatorname{Var}(\mathrm{u})=\sigma^{2}$
T-test:	$\left(\beta^{\wedge} \mathrm{j}-\beta^{\mathrm{j}}\right) / \mathrm{se}\left(\beta^{\wedge} \mathrm{j}\right) \sim \mathrm{t} \mathrm{n}-\mathrm{k}-1=t \mathrm{df}$
$\mathrm{HO}: \beta \mathrm{j}=0$	used in testing hypotheses about a single population parameter as in .
Test statistic	$t \beta^{\wedge} \mathrm{j}=\left(\beta^{\wedge} \mathrm{j}\right) / \mathrm{se}\left(\beta^{\wedge} \mathrm{j}\right) \sim \mathrm{t} \mathrm{n}-\mathrm{k}-1$
	$t=($ estimate - hypothesised value $) /$ standard error

Alternative Hypothesis/one sided

$H 1: \beta j>0$	$t \beta^{\wedge} j>c[c @ 5 \%]$
$H 1: \beta j<0$	$t \beta^{\wedge} j<-c[c @ 5 \%]$

Two sided

$\mathrm{H} 1: \beta \mathrm{j}=/=0$	$\left\|t \beta^{\wedge} j\right\|>c[c @ 2.5 \%]$
If H 0 , rejected	x j is statistically significant, (significantly different from zero), @ the 5\% level
if HO , not rejected	$x \mathrm{j}$ is statistically insignificant @the 5% level
P-value	smallest significant level at which the null hypotheses would be rejected
Confidence Interval	$\beta^{\wedge} \mathrm{j} \pm \mathrm{c} \cdot \mathrm{se}\left(\beta^{\wedge} \mathrm{j}\right)$
	where c is 97.5 percentile in a t $\mathrm{n}-\mathrm{k}$-1 distribution
Cl given; @ 5\% significant level	$\mathrm{HO}: \beta \mathrm{j}=\mathrm{aj}$ is rejected against $\mathrm{H} 1: \beta \mathrm{j} \neq=\mathrm{aj}$; if aj is not in the 95% confidence interval
$\mathrm{H} 0: \beta 1<\beta 2 \Leftrightarrow \beta 1-\beta 2<0$	$t=\left(\beta^{\wedge} 1-\beta^{\wedge} 2\right) / \mathrm{se}\left(\beta^{\wedge} 1-\beta^{\wedge} 2\right)$
$\operatorname{se}\left(\beta^{\wedge} 1-\beta^{\wedge} 2\right)=\sqrt{ } \operatorname{Var}\left(\beta^{\wedge} 1-\beta^{\wedge} 2\right)$	
	$\begin{aligned} & \operatorname{Var}\left(\beta^{\wedge} 1-\beta^{\wedge} 2\right)=\operatorname{Var}\left(\beta^{\wedge} 1\right)+\operatorname{Var}\left(\beta^{\wedge} 2\right)-2 \operatorname{Cov}\left(\beta^{\wedge} 1,\right. \\ & \left.\beta^{\wedge} 2\right) \end{aligned}$
alternative to calculating se($\beta^{\wedge} 1$ $\beta^{\wedge} 2$)	Let $\theta=\beta^{\wedge} 1-\beta^{\wedge} 2 ; \beta 1=\theta+\beta^{\wedge} 2$

$\mathrm{H} 0: \theta=0, \mathrm{H} 1: \theta<0$
Substituting $\beta 1=\theta+\beta^{\wedge} 2$ into the model we obtain

By dsjac3

cheatography.com/dsjac3/

Not published yet.
Last updated 31st October, 2016.
Page 2 of 3 .

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

Inference (cont)	
$\beta 0+\theta x 1+\beta 2(x 1+x 2)+\beta 3 x 3+u$	
F Test	$\mathrm{F}=[($ SSRr-SSRur)/q] / [SSRur/(n-k-1)]
q	= number of restrictions
$n-k-1=d f u r$	$=\mathrm{df} \mathrm{r}-\mathrm{df} \mathrm{ur}$
$\mathrm{R}^{\mathbf{2}} \mathrm{F}$ stat	$\mathrm{SSR}=\mathrm{SST}\left(1-\mathrm{R}^{2}\right)$
	$\left.F=\left[\left(R^{2} u r-R^{2} r\right) / q\right] /\left[1-R^{2} u r\right) /(d f u r)\right]$
remember to not square the R value thats already been done	
Overall significance of the regression	
Testing joint exclusion	$\left[R^{2} / R\right] /\left[\left(1-R^{2}\right) /(n-k-1)\right]$
Data Scaling	
Changes:	
if Xj is * by c Its coefficient is / by c	
If dependant ALL O variable is * by c	efficients are * by c
neither t nor F statistics are affected	
Beta obtain coefficients indepe scores 	m an OLS regression after the dependant and t variables have been transformed into z-

By dsjac3

cheatography.com/dsjac3/

Not published yet.
Last updated 31st October, 2016.
Page 3 of 3 .

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

