Genetics Cheat Sheet by dolly via cheatography.com/183950/cs/38348/

Historical views of heredity and inheritance	Modern genetics introduced by Darwin and Mendel (cont)	Conflict between Mendelian and Biometrician (cont)	Emergence of Biometrical genetics (cont)	
Bricks and mortar theory by Hippocrates - Elements are originated from all parts of the body and became concentrated in male semen. This will be developed and formed into human in the womb - Inheritance is an acquired characteristics	Mendel's particulate inheritance 1. Law of segregation 2. Law of independent assortment 3. Law of dominance Exception to independent assortment - Linked genes Genes can be linked together if it is located close together on the same chromosome	Biuometrician's claim Traits are continuous (Blending inheritance) and heritable Mendelian's claim Mendelian genetics work in inheritance Achondroplasia <90cm height	Galton's claim(2): Traits are resemble between parents and offspring - When measuring the height of parents and offspring, the mid-parental height has almost no deviation to their offspring height - Therefore, traits are resemble between parents and offspring	
Blueprint theory by Aristotle	Rediscovery of Mendel's work	Marfan Syndrome >200cm height	Brownlee's Multi-Gene model to explain Mendelian inheritance in	
 Heredity is partly assymetric Transmission is particulate (definitely one trait or another) 	Allele One of two or more versions of DNA sequence at a given genomic location	Emergence of Biometrical genetics Whar are Galton's claims in trait	the blending inheritance model 1. Parents and Child: 0.5 correlation because parents transmit 50% of their genome	
Lamarckian Inheritance - To explain while some features persisted while others disappeared - Traits acquired/ lost when depends on need	Conflict between Mendelian and Biometrician Debates between Mendelian and Biometrician - Do the hereditary and evolutionary properties for a trait like height were the	hereditary? 1. Traits like height, weight, arm length are normally distributed, not binary 2. Traits are resemble between parents and offspring Galton's claim(1): Traits are "-	to their child 2. Parents and Grandchild: 0.25 correlation 3. Parents and Great-grandc- hild: 0.125 correlation - These correlations are based on Mendelian's segregation law	
Darwin and Mendel	same as those for Mendel's	normally distributed" means	Polygenic Model	
arwin's blending inheritance- Whether inheritance of- Offspring inherit the parents'- Whether inheritance of- Offspring inherit the parents'complex trait was byaverage characteristic'blending' of parental- All parts of the parents canphenotypes (Darwin) whichcontribute to the evolutionwas seen as different to theand development of theinheritance of discreteoffspring (Pangenesis)characters as in Mendel's	given a population 2. A trait can be subject to mathematical transformation What Galton use to study continuous variation in organism? - Regression - Correlation	Fisher's Infinitesimal model - Polygenic inheritance :A quantitative trait could be explained by Mendelian inheritance if several genes affect the trait - Include additive and dominant factors - Resemblance between		
	peas	- Correlation	dominant factors - Resemblance between relatives occur due to their genetic covariance	

By dolly cheatography.com/dolly/ Not published yet. Last updated 24th April, 2023. Page 1 of 8.

Genetics Cheat Sheet by dolly via cheatography.com/183950/cs/38348/

Polyc	nonic N	Indel	(cont)
i Oiye		nouci	Cont

Fisher's single locus model

Assume:

1. Dominant allele is not known

2. A locus either follows

dominant or additive

- Used to determine whether the locus follow dominant or additive

Fisher's single locus model, assume A2A2= -a and A1A1= a

1. If d>0 : A1 is dominant to A2

If d<0 A2 is dominant to A1
 If d=a/-a: Complete

dominance (Heterozygote)

4. If d=a/-a: Over-dominance

5. If d=0: Locus is additive

Continuous distribution of quantitative traits

Alleles in our genome is limited but environmental factors are not. Therefore, traits are also influenced by environmental factors

Fisher's partitioning variance Genetic and non-genetic

Three genetic factors (G)

1. Additive (A)

factors

2. Dominance

3. Epistasis: Interaction

between additive factors/ additive - dominant factors

Non-genetic factor

Environment (E)

By **dolly** cheatography.com/dolly/

Polygenic Model (cont) Phenotypic variance (P) Interaction between genetic and environmental factors (GxE) 2. $P = G + E + G \times E$ Heritability How much of the variation in a trait is due to variation in genetic factors (G) Genetic Architecture - Composition of various genetic factors upon a phenotype - Include additive, dominance and epiptasis Genetics To identify genetic factor associated with traits/disease but also study the contribution of a genetic factors

Trait is not dichotomy (contrast between two things)

The features of an organisms are due to the individual's genotype and environment

Allele

Allele and Allele frequencies

- Proportion of chromosomes in population carrying the
- allele of traits/disease
- Different combination of alleles determine traits or diseases
- Allele frequencies indicate the proportion of observed
- genotypes in a given

population

Not published yet. Last updated 24th April, 2023. Page 2 of 8.

Allele (cont)

Allele transmission to next generation

Same with Mendel's first law
Totally independent and not

influenced by environmental factors

Hardy-Weinberg Equilibrium

Do segregation in Mendelian inheritance law affected by the segregant (allele)?

No. This is called "stable"

Hardy-Weinberg principle

Assumed that allele frequencies will not change from generation to generation
 p2+2pq+q2=1

- p+q=1

Assumptions of Hardy-Weinberg equilibrium

- 1. Random mating
- No natural selection
 Equal genotype freque-
- ncies in two sexes
- 4. No mutation/migration
- 5. No differential viability

6. Infinite population size However, all of these are not realistic!

Hardy-Weinberg Equilibrium (cont)

Mendelian segregation

Preserved in any organism with sexual reproduction regardless of allele frequency in the population

Chi-Square Test

Chi square

Use statistics to determine whether a locus of interest is under HWE or not

Null hypothesis

There is no difference between observed value and the expected value

Degree of freedom (DF)

- Number of phenotypic

possibilities in the cross

- Example DF: 3(AA,Aa,aa)-1=2

- If the level of significance read from the table is greater than 0.05/5%, the null hypothesis is not rejected

When the null hypothesis is supported by analysis

Assumptions

- 1. Mating is random
- 2. Normal gene segregation
- 3. Independent assortment

Genetics Cheat Sheet by dolly via cheatography.com/183950/cs/38348/

Chi-Square Test (cont)	Heritability (cont)	Heritability (cont)	Normal Distribution	
When the null hypothesis is not supported by analysis Assumptions 1. Non-random occur	Total phenotypic variance for a character? - VP=VG+VE - Combined effects of	Additive genetic variance (VA) - Responsible for the resemblance between parents and offspring	Two quantities that describe a normal distribution 1. Mean 2. Variance	
2. Genes are not randomly segregating because they are linked on the same chromosome/inherited together.	genotypic and environmental variance Genetic variance (VG) - The variance among the mean phenotypes of different	 The basis for the response to selection Degree of relatedness and the components of phenotypic covariance 	Deviation - Distribution of a trait in a population= Proportion of individuals that have each of the possible phenotypes - In normal distribution, half points are above and half points are below mean - One standard deviation are located in the mean - The distribution of a trait in	
Introduction of Heritability Model to describe heritability 1. Fisher's model 2. Falconer's model	genotypes -Additive genetic varian- ce(VA): Variation due to the additive effects of alleles - Dominance genetic variation (VD): Variation due	 Identical twins: VA+VD+VE Parent-offspring:1/2VA Full siblings:1/2VA+1/4VD+VE Grandparent-Grandchil- d:1/4VA 		
Falconer's Model Mathematical formula used in twin studies to estimate the relative contribution of genetics vs environment to variation in a particular trait - Heritability of the trait based on the difference between twin correlations - Heritability=2(rMZ-rMD)	to dominance relationships among alleles - Epistatic genetic variation (VI): Variation due to intera- ctions among loci Environmental variance (VE) The variance among phenotypes expressed by replicate members of the	Heritability of a trait - A measure of the degree resemblance between relatives - Estimates the degree of variation in a phenotypic trait in a population that is due to genetic variation between individuals in that population	a population implies nothing about its inheritance	
			Covariance A measure of the joint variab- ility of two random variables (trait) - Example: Measure the height deviation of father and son in a population	
				- Where r=concordance of the phenotype, MZ=Monozygotic Twins, DZ= Dizygotic twins
Heritability	Dominance genetic variance	Narrow sense heritability (h2)		
Phenotypic similarity in family depends on 1. Genetic relationship 2. Traits	(VD) Due to dominance deviations which describe the extent to which heterozygotes are not exactly intermediate between the homozygotes	variance that is due to additive genetic factors		
		Broad sense heritability (H2) The proportion of trait variance that is due to all		
		genetic factors including VD, VA, VI		

By **dolly** cheatography.com/dolly/ Not published yet. Last updated 24th April, 2023. Page 3 of 8.

Genetics Cheat Sheet by dolly via cheatography.com/183950/cs/38348/

Normal Distribution (cont)	Genes (cont)	Genes (cont)	Cells and Chromosomes (cont)	
Resemblance between relatives -Depends on the degree of relationship - Use slope, not correlation coefficients to compute resemblance of family members - Identical twin=100%, Full siblings=50%, Parent-offsp- ring=50%, Half-sibling=25%	How many genes can make protein in human? 20,000 genes make proteins and most of them involve in determining traits Genotype The part of the genetic makeup of a cell which determine one of its charac- teristics	UTR Either of two sections, one on each side of a coding sequence on a strand of mRNA Promoter The section of DNA that controls the initiation of RNA transcription as a product of a gene	Cons of sexual reproduction - Require two organisms for mating - Requires more cellular energy -More time required for offspring development Elements in Chromosomes Ploidy	
Morgan Experiment	Phenotype	Cells and Chromosomes	Number of homologous sets of chromosomes in a cell	
Morgan's experiment Proved that chromosomes are the location of Mendel's heritable factors from his fly experiment Centimorgan The frequency of crossing over Linkage Map/ Genetic Map If the frequency of how often genes crossover is known, the percentage can be used to estimate how far apart the	 characteristics of an individual resulting from the interaction of its genotype with the environment Components in a gene Gene contain exons, introns, UTRs and promoter in its transcript Gene can have various transcripts due to alternative splicing Exon A region of a trascribed gene 	Where does genetic recomb- ination occur in meiosis? In meiosis I and it occur between Prophase I and Metaphase I Pros of asexual reproduction - Produce more offspring as it takes less time - Require less energy Cons of asexual reproduction - No variation in offspring - Less variation in population - Mutation can slightly increase variations - Fragile to environmental change	Locus A fixed position on a chromosome that may be occupied by one or more gene The nuclear genome Consist of 6 billion nucleo- tides in 46 chromosomes Chromosomes Hereditary factors Genes and allele that are	
on a chromosome	present in the final functional RNA molecule		Autosomal chromosomes/ autosomes	
Genes Definition of gene - A core unit of the heredity that control the development of a trait - Mendel's "discrete particle" in particulate inheritance actually indicated the concept of "gene"	Any nucleotide sequence within a gene that is removed by RNA splicing during maturation of the final RNA product	Pros of sexual reproduction - Increase variation in offspring - More resistant to many environmental forces because of genetic variation	Pairs number 1 to 22 Sex chromosomes/ somatic cells Pair number 23 Mitochondrial chromosomes in mitochondria - Haploid - Maternal transmission	

- Those consist of DNA
- sequences and produces
- functional elements

By **dolly** cheatography.com/dolly/ Not published yet. Last updated 24th April, 2023. Page 4 of 8.

Genetics Cheat Sheet by dolly via cheatography.com/183950/cs/38348/

Chromosomes (cont)	Mutation (cont)	Mutation (cont)	Mutation (cont)	
Karyotype - Visualize chromosome shapes, structures and behaviors of chromosomes during cell division - Autosomes in metaphase are arranged from the longest to shortest and from number 1 to 22 - Chromosomes number 23 are either XX/XY p armschort a arms pat p	Darwinian view on mutation - Most mutations have an impact on certain traits - Natural selection is the primary force of evolution Post-Mendelian geneticists' view on mutation Natural selection plays little or modest role but occurrence of mutation would be a major evolution force	Neo-Darwinism - Natural selection is assumed to play much more important role than mutation - Creating new characters in the presence of genetic recombination Kimura's view: Neutral mutation - The rate of substitution is so high that if each mutation improved fitness, the gap	Variant - The change in the nucleotide sequences - Since a change in nucleotide sequence may not be permanent, variants are often called: genetic variant, variation or genetic variation Polymorphism Describe a variant with a frequency above 1% but	
- p arm=short, q arm= not p	"Hopeful Monster" hypothesis by Richard Goldschmidt	between the most fit and typical genotype would be large	broadly variants that we know the frequency in certain population	
Saltationists Claim that evolution take place suddenly (saltating)(so that change instantaneous transition into a new species Gradualists Believe gradual process of evolution given large-scale variability in a population Gene can be defined in terms of their behavior as fundamental units based on:	 Macroevolution through macromutations Called "Hopeful Monsters" because they were the embodiment of large phenotypic changes that had the potential to succeed as new species (saltation) Change early development and thus cause large effects in the adult phenotype Developmental macromutations Mutations in developmentally important genes could produce large phenotypic 	 This rapid rate of mutation means that the majority of the mutations were neutral Mutations had little/ no effect on the fitness of the organism Not all mutations affect on/ completely determine our trait, including diseases Mutation is an old term Describe the situation for permanent change in evolut-	MutationSaltationistsClaim that evolution take place suddenly (saltating)(so that change instantaneous transition into a new speciesGradualistsBelieve gradual process of evolution given large-scale variability in a population	
 Hereditary Transmission Genetic recombination 3. 		ionary process	Mutation and Population Out of Africa Theory	
Mutation 4. Gene function	effects		 Explains the origin of modern human beings A small subset of this population migrated out in the past 100,000 years and rapidly expanded throughout a broad geographical region 	

By **dolly** cheatography.com/dolly/ Not published yet. Last updated 24th April, 2023. Page 5 of 8.

Genetics Cheat Sheet by dolly via cheatography.com/183950/cs/38348/

Mutation and Population (cont)

Non-Afracan populations have different variant frequency due to

- 1. Bottleneck
- 2. Long migration history

Coalescent Theory

- Two sample lineages find common ancestor
- A model how an allele sampled from a population may have originated from a common ancestor

Stochastic

When coalescence occurs is a stochastic (random probability(process

Genomic study of population structure

Implications of HapMap project and 1000 Genome Project

- Variant frequency is uniquely represented in each population so can identify the population structure
- Genomic data are useful and fundamental resource to identify genes associated with disease and genetic variant in patients

Genomic study of population structure

Implications of HapMap project and 1000 Genome Project

- Variant frequency is uniquely represented in each
- population so can identify the population structure
- Genomic data are useful and fundamental resource to identify genes associated with disease and genetic variant in patients

Genetic variant by size

SNV - Single Nucleotide Variant

- Substitution of one/another base pair at a particular
- location in the genome
- Also called SNP if the allele frequency in a population is known
- A point mutation because it only affects a single
- nucleotide of nucleic acid
- There are ~3,500,000 SNVs per individual (more in African)
- Everyone have different compositions of SNVs so there us variability in traits
- The ratio of heterozygous and homozygous SNVs is
- ~2:1

Genetic variant by size (cont)

Indel - Insertion/Deletion

- 1-1000bp changes in our genome
- There are ~300,000 to 600,000, indels per individual (more in African)
- Less than SNVs as indels have a large phenotypic effect than SNVs so more selective pressure

Indels can be divided to

- 1. Microsatellite
- polymorphism
- 2. Mobile element insertion polymorphism
- Microsatellite polymorphism
- 2-4 nucleotide unit repeated in tandem 5-24 times

Mobile element insertion polymorphism

- Cause human genetic diversity through
- retrotransposition
- Involves transcription into RNA
- Reverse transcription into DNA sequence
- Insertion into another site in genome
- SV Structural variant
- A genomic change >1000bp

Genetic variant by size (cont)

- SV can be divided to
- 1. Copy Number Variant
- (CNV) Deletion/Duplication 2. Copy Number Neutral
- Variants (CNNV) Inversion/Insertion/ Translocation

Small variants

SNVs and indels

Large variants

SVs

- SV in the gnomAD project
- Represent population structure as small variants
 More singleton SVs are observed in larger SVs
 Singleton: The variant only seen in an individual (rare) Rare: It's under strong natural selection so only seen in few individuals
 Size of SVs are correlated

Genetic variant by size

SNV - Single Nucleotide Variant

with the effect size of SVs

Substitution of one/another base pair at a particular location in the genome
Also called SNP if the allele frequency in a population is known
A point mutation because it only affects a single

nucleotide of nucleic acid - There are ~3,500,000 SNVs per individual (more in African)

 Everyone have different compositions of SNVs so there us variability in traits
 The ratio of heterozygous and homozygous SNVs is ~2:1

Sponsored by Readable.com Measure your website readability! https://readable.com

By **dolly** cheatography.com/dolly/ Not published yet. Last updated 24th April, 2023. Page 6 of 8.

Genetics Cheat Sheet by dolly via cheatography.com/183950/cs/38348/

Genetic variant by size (cont)	Genetic vari (cont)	ant by Frequency	Genetic var (cont)	iant by Frequency	Genetic varia	nt by Frequency
Indel - Insertion/Deletion - 1-1000bp changes in our genome - There are ~300,000 to 600,000, indels per individual (more in African) - Less than SNVs as indels have a large phenotypic effect than SNVs so more selective pressure Genetic variant by Frequency	Selection and Allele Frequency	- Allele freque- ncies can be changed by selection - Increase beneficial alleles and removes delete- rious one - Traits not favored over mating are likely under natural selection (high	Fecundity	 Based on fertility ratio (FR) Lower fecundity: Higher selective pressure on the trait If a trait is not suited to mating/.r- eproduction, allele for this trait disapp- eared in a population Similar to reprod- 	FR	Calculated based on the number of children indivi- duals in that group had compared with the general population - If a disease have 0.5 FR, they have average half as many children
and work on trait so the Frequency frequency of variants that contribute to trait can be changed - Level of natural selection is varied by traits and diseases		selective pressure) - Natural selection tends to make allele with higher fitness more common over time, resulting in Darwinian evolution		uctive fitness	Penetrance	as the general population The proportion of individuals carrying a particular variant of a gene that also express an associated trait

By dolly cheatography.com/dolly/

favored by selection, therefore, the frequency variants

increase - According to Polygenic model, a single variant is lilkely contributing partially/highly partially to a trait. Therefore, there is a wide range of the frequency of variants

> Not published yet. Last updated 24th April, 2023. Page 7 of 8.

Genetics Cheat Sheet by dolly via cheatography.com/183950/cs/38348/

Genetic variant by Frequency (cont)	Genetic variant by Transmission (cont)	Genetic variant by Transmission (cont)	Genetic variant by consequence (cont)	
Fitness - Determine the allele frequency in population - If fitness is not affected by variant, it will be remained in a population, ultimately	Mutability/Mutation ratesVariant frequency and its penetrance for diseaseHow much errors are occured during replication- Inverse relationshipMutation signatures The pattern of somatic mutations in disease- Allele frequency is low but penetrance is highGenetic variant by consequence		Variant annotation - The process of assigning functional information to DNA variants - Can be varied by transcript - A gene can have more than one transcript	
increasing its frequency	Human germline mutation rate 1.0~1.5x 10-8 bp per generation	Missense variants Single base pairs substitution	Two schemes for variant annotation	
Type of genetic variants by transmission mode 1. Inherited variants 2. De novo variants 3. Somatic variants	How many total of de novo variant from mother and father ? - ~70 de novo variants - 80% of de novo variants are from father's sperm	Trucating variants A genetic variant which results in a shorter version of the protein being produced	Choose the most critical consequence by the variant per gene 2. Per-transcript annotation: All consequence for every transcript	
De novo variants - new variants arise during	Main contributor to de novo variants - Advanced parental age	Destroys the mRNA leading to no protein		
 different nucleotide changes compared to DNA template Errors are not present in genome thus called de novo=new Errors in somatic cell: de novo somatic variants Errors in germ cells: de 	- Father is higher than mother- Because spermatog- onial cells continue to divide throughout life which allow the progressive accumulation of mutations due to errors during DNA replication/failure to repair non-replicative DNA	Noncoding variants - Variants located outside the coding regions - Located in promoters, transcription factor binding sites, enchancers Protein isoform Protein that are similar to	Linkage disequilibrium (LD) - Non-random association of alleles at two or more loci in a given population - LD between two alleles is related to time of the mutation events, genetic distance and population	
novo germline variants	damage between cell divisions Rarest variants	each other and perform similar roles within the cells	distance and population history - LD around an ancestral mutation on founder chromosome	
	Have greatest potential to carry for disorders			

Haplotype

A group of alleles in an organism that are inherited together from a single parent

By dolly cheatography.com/dolly/ Not published yet. Last updated 24th April, 2023. Page 8 of 8.