\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{dolly} \pdfinfo{ /Title (bacterial-cell-structure.pdf) /Creator (Cheatography) /Author (dolly) /Subject (Bacterial Cell Structure Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{2C8A6E} \definecolor{LightBackground}{HTML}{F1F7F5} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Bacterial Cell Structure Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{dolly} via \textcolor{DarkBackground}{\uline{cheatography.com/183950/cs/38324/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}dolly \\ \uline{cheatography.com/dolly} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 21st April, 2023.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{4} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{A Typical Bacterial Cell}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{How does prokaryotes differ from eukaryotes?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Most prokaryotes lack internal membrane system} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{What are bacterial cell shapes?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Cocci(spheres), Bacilli(rods), Vibrios(comma), Coccobacilli(very short rods), Spirilla(rigid helices), Spirochetes(flexible helices),Mycelium, Pleomorphic(variable in shape)} \tn % Row Count 9 (+ 6) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{What are the examples of smallest and largest bacteria?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Smallest - Mycoplasma\{\{nl\}\}Largest - Epulopiscium fishelsoni} \tn % Row Count 13 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{What causes bacteria to have a particular size and shape?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}To increase the S/V ratio for more efficient nutrient uptake and protection from predator} \tn % Row Count 17 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Bacterial Cytoplasmic Structures}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Types of Cytoskeletons} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- Microtubules\{\{nl\}\}- Microfilaments\{\{nl\}\}- Intermediate filaments} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Examples of Cytoskeletons} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- FtsZ\{\{nl\}\}- MreB/MbI\{\{nl\}\}-CreS} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{FtsZ} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- Forms a ring at the center of a dividing cell\{\{nl\}\}- Required for the formation of septum that wull separate the daughter cells} \tn % Row Count 9 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{MreB/MbI} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- Only found in rod shaped cell\{\{nl\}\}- Determine cell shape in rod-shaped cell\{\{nl\}\}- Determine cell shape by properly positioning the machinery needed for peptidoglycan synthesis} \tn % Row Count 14 (+ 5) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{CreS} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- Rare\{\{nl\}\}- Give bacteria the curved shape} \tn % Row Count 16 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{What are inclusions?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Granules of organic/inorganic material that are stockpiled by the cell for future use} \tn % Row Count 19 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Types of inclusions} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}1. Storage inclusions - Storage for nutrients, metabolic end products, energy, building blocks\{\{nl\}\}2. Microcompartments- Have specific functions (Carboxymes as example)\{\{nl\}\}3. Gas vacuoles - Provide buoyancy in gas vesicles\{\{nl\}\}4. Magnetosomes- Identify earth's magnetic field} \tn % Row Count 26 (+ 7) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{What is the Nucleoid?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- Location of chromosomes and associated proteins\{\{nl\}\}- Not membrane bounded therefore mix with cytoplasma} \tn % Row Count 30 (+ 4) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Bacterial Cytoplasmic Structures (cont)}} \tn % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{How microbes managed to fit their chromosomes into the small space of nucleoid?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}1. Using physical factors - Macromolecular crowding and Supersoiling\{\{nl\}\}2. Using architectural proteins - NAPs (HU Protein)} \tn % Row Count 5 (+ 5) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{What is Plasmids?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}1. Double -stranded DNA molecules that can exist independently of the chromosome\{\{nl\}\}2. Episomes - Can integrate into chromosome and replicate with the chromosome\{\{nl\}\}3. Contain gene that confer selective advantage to host} \tn % Row Count 11 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{The Bacterial Endospore}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{What is endospores?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Complex, dormant structure formed by rods and cocci bacteria only} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{How are endospores structurally different from vegetative cells?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Consist of a core surrounded by several layers varying in composition. \{\{nl\}\}1. Core - Has ribosomes and nucleoid and low water content\{\{nl\}\}2. Inner Membrane\{\{nl\}\}3. Germ cell wall- Contain peptidoglycan that will form a cell wall in vegetative state\{\{nl\}\}4. Cortex - occupy half of the endospore's volume\{\{nl\}\}5. Outer membrane\{\{nl\}\}6. Coat- Composed of a high cross-linked different proteins\{\{nl\}\}7. Exosporium - Made up of glycoproteins} \tn % Row Count 15 (+ 12) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{What makes endospores so resistant to harsh environmental conditions?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}There are various layers to protect its enzymes and DNA\{\{nl\}\}1. The coat - protects the endospores from chemicals and lytic enzymes (lysozymes)\{\{nl\}\}2. The inner core - Extremely impermeable to various chemicals, including those that damage the DNA\{\{nl\}\}3. The core - High water content, high amount of Ca-DPA, low pH Ph} \tn % Row Count 24 (+ 9) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Bacterial Plasma Membranes}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{How bacterial lipid changes in different temperatures?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Saturation levels of membrane lipid depends on the environment conditions.\{\{nl\}\}1. Hot - Have more saturated and long-chained fatty acid\{\{nl\}\}2. Cold - Have more unsaturated and short-chained fatty acids} \tn % Row Count 7 (+ 7) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{What is growth factors?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Molecules that bacteria need for survival but can't synthesize and need to obtain from the environment} \tn % Row Count 11 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Classes of growth factors} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}1. Amino acids - Protein synthesis\{\{nl\}\}2. Purines and Prymidines - Nucleic acid synthesis\{\{nl\}\}3. Vitamins - Enzyme Cofactors\{\{nl\}\}4. Heme - Hemoproteins} \tn % Row Count 16 (+ 5) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{How bacteria uptake nutrients?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Microbes can only take in dissolves particles across a selectively permeable membrane by passive and active transports} \tn % Row Count 20 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{What are the transport systems used?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}1. Facilitated Diffusion\{\{nl\}\}2. Active Transport\{\{nl\}\}3. Group Translocation} \tn % Row Count 23 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Passive Diffusion} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}1. Molecules move down the concentration gradient\{\{nl\}\}2. Water, oxygens and carbon dioxide move across the membrane this way} \tn % Row Count 27 (+ 4) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Facilitated Diffusion} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Diffusion of molecules across the plasma membrane down the concentration gradient with the assistance of protein carrier/ channel} \tn % Row Count 31 (+ 4) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Bacterial Plasma Membranes (cont)}} \tn % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Primary Active Transport (ABC Transporter, Uniport)} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Uses energy provided by ATP hydrolysis to move substance against a concentration gradients} \tn % Row Count 4 (+ 4) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Secondary Active Transport (Using proton and sodium gradient, \seqsplit{Cotransport-Symport/Antiport)}} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}uses ion concentration gradients to cotransport substances} \tn % Row Count 8 (+ 4) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Group Translocation (Phosphorelay System)} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}A molecule is chemically modified as it is brought into the cell} \tn % Row Count 11 (+ 3) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{What is the advantage of active transport compared to facilitated transport?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Allow bacteria to uptake nutrients when they liv in a low nutrient concentration environment} \tn % Row Count 15 (+ 4) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Why microorganisms require iron?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Important for building molecules needed in energy-conserving processes} \tn % Row Count 18 (+ 3) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{What is siderophores?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Low molecular weight molecules secreted by bacteria that helps to bind ferric ion and supply it to the cell when the iron uptake is difficult} \tn % Row Count 22 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Bacterial Cell Wall}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{What are the types of bacteria based on Gram Stain?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Gram-positive bacteria and Gram-negative bacteria} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{What is Peptidoglycan?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Rigid structure outside the cell membrane} \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Gram-positive bacteria} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- Stain purple\{\{nl\}\}- Thick peptidoglycan\{\{nl\}\}- Contain large amount of teichoic acids(negatively charged)\{\{nl\}\}- Small periplasmic space} \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Gram-negative bacteria} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- Stain red/pink\{\{nl\}\}- Thin peptidoglycan\{\{nl\}\}- No teichoic acids but have lipopolysaccharides\{\{nl\}\}- Bigger periplasmic space} \tn % Row Count 14 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Functions of cell wall} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- Maintain bacteria shape\{\{nl\}\}- Protect cell from osmotic lysis and toxic materials\{\{nl\}\}- Contribute to pathogenicity} \tn % Row Count 18 (+ 4) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Peptidoglycan structure are composed of what identical subunits?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}1. Two alternating sugars - NAG and Nam\{\{nl\}\}2. Amino acids - Alternating L- and D- amino acids} \tn % Row Count 23 (+ 5) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Three amino acids not found in proteins of other organism} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- D-glutamic acid\{\{nl\}\}- D-alanine\{\{nl\}\}- Meso-diaminoplemic acid\{\{nl\}\}- Help to protect the cell wall against degradation by most peptidase} \tn % Row Count 28 (+ 5) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Peptidoglycan chains are crosslinked by peptides for strength} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- Composed of alternating D- and L-amino acids\{\{nl\}\}- Gram-positive bacteria have more cross-linking\{\{nl\}\}- Gram-negative bacteria have lesser crowss-linking} \tn % Row Count 34 (+ 6) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Bacterial Cell Wall (cont)}} \tn % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Lipopolysaccharide consist of and its functions?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}1. Lipid A - Endotoxins which is harmful\{\{nl\}\}2. Core polysaccharide - Contributes to negative charge on cell surface\{\{nl\}\}3. Side O chain- Helps bacteria to escape human immune system by changing the O side chain} \tn % Row Count 6 (+ 6) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{What are the function of Teichoic acids?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- Help maintain cell envelope\{\{nl\}\}- Protect from environmental substances\{\{nl\}\}- May bind to host cells} \tn % Row Count 10 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{External Structures}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{What are the external structures of bacteria and archaea?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- Pili/Fimbriae\{\{nl\}\}- Flagella} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Function of Fimbriae} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Attachment to surface} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Functions of Type IV Pili} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- Motility\{\{nl\}\} - Twitching} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Function of Sex Pili} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Transfer of DNA from one bacterium to another} \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{What is Flagella?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Threadlike, locomotor appendages extending outward from plasma membrane and cell wall} \tn % Row Count 12 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Functions of Flagella?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- Motility\{\{nl\}\}- Swarming\{\{nl\}\}-Attachment to surfaces} \tn % Row Count 15 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Each bacterial flagellum is composed of?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- Filament\{\{nl\}\}- Hook\{\{nl\}\}- Basal body} \tn % Row Count 17 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{What is self-assembly? Why this make sense in flagellum?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- A system's components organize into a functional structures as the result of interactions between the components without external directions\{\{nl\}\}- Because many components of the flagellum lie outside the cell envelope and must be transported out of the cell for assembly} \tn % Row Count 25 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Components Outside of the Cell Wall}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{What are the outermost layers of bacterial cell and its function?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- Glycocalyx (Capsules/Slime Layers)\{\{nl\}\}- S Layers\{\{nl\}\}} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Glycocalyx} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- Consist of a network of polysaccharides extending from the surface of the cells\{\{nl\}\}- Capsules and Slime Layer} \tn % Row Count 8 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Capsule} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- Well organized\{\{nl\}\}- Not easily removed\{\{nl\}\}- Resistance to phagocytosis} \tn % Row Count 11 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Slime Layer} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- Unorganized\{\{nl\}\}- Easily removed\{\{nl\}\}- AId in motility} \tn % Row Count 14 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{S Layer} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- Structured layers of proteins/ glycoproteins that self-assemble\{\{nl\}\}- Adhesion to surface} \tn % Row Count 17 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{How does an S-Layer differ from a proteinaceous capsule?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Monomer of S-Layer have the ability to self-assemble} \tn % Row Count 21 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Bacterial Motility and Chemotaxis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{What are the types of motility?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}1. Swimming - Flagella\{\{nl\}\}2. Swarming - Flagella\{\{nl\}\}3. Spirochete motility\{\{nl\}\}4. Twitching motility\{\{nl\}\}5. Gliding motility} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Bacterial Flagellar Movement} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- A rigid helix that rotates like a propeller to push the bacterium through the water\{\{nl\}\}- CCW- Froward motion\{\{nl\}\}- CW- Cell stop and tumble} \tn % Row Count 9 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Mechanism of Flagellar Movement} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}2 parts of motor producing torque - Rotor and Stator\{\{nl\}\}1. Rotor - C ring and MS ring turn and interact with stator\{\{nl\}\}2. Stator- Mot A and Mot B proteins produce energy through PMF\{\{nl\}\}} \tn % Row Count 15 (+ 6) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{What are the power used by most flagellar motors?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- Difference in charge\{\{nl\}\}- Difference in pH} \tn % Row Count 17 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Swarming} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- Occur in group\{\{nl\}\}- Mediated by flagella\{\{nl\}\}- Occurs on moist surfaces} \tn % Row Count 20 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Spirochete} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}- Flagella located around the cell and remain within periplasmic space\{\{nl\}\}- Rotate when the outer membrane rotate} \tn % Row Count 24 (+ 4) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Myxococcus spp. exhibit both twitching and gliding motility} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}1. Twitching - Jerky movement brought by the type IV pili\{\{nl\}\}2. Gliding - Smooth} \tn % Row Count 28 (+ 4) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{What is chemotaxis?} \tn \mymulticolumn{1}{x{3.833cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Movement towards a chemical attractant or away from a chemical repellent} \tn % Row Count 31 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}