Complex Numbers	
$\mathrm{j}^{2}=-1$	$j^{3}=-j$
$j^{4}=1$	$z=a+b j$
$z=r(\sin \theta+j \sin \theta)$	$z=r e j \theta$
$\tan ^{-1} \mathrm{~b} / \mathrm{a}=\theta$	$\cos ^{-1} \mathrm{a} / \mathrm{r}=\theta$
$\sin ^{-1} \mathrm{~b} / \mathrm{r}=\theta$	$(a+b j)^{*}=a-b j$
$\|z\|=r=s q r t\left(a^{2}+b^{2}\right)$	$\|z\|^{x}=\left\|z^{x}\right\|$
$\arg (\mathrm{z})^{x}=x \arg (\mathrm{z})$	$\arg (\mathrm{z})=\theta+2 \mathrm{k} \pi$
$(\cos \theta+\mathrm{j} \sin \theta)^{\mathrm{k}}$	$=\cos k \theta+j \sin k \theta$
$=\left(\mathrm{e}^{\mathrm{j}}\right)^{\mathrm{k}}=\mathrm{e}^{\mathrm{j} k} \mathrm{C}$	< DeMoivre's Theorum
* means conjugate $j=i=$ sqrt(-1) = imaginary unit Find roots example: $z^{2}=-4 j$ Convert to exponential form first: $z^{2}=4 e-j i \neq / 2$	
Substitute values of $k(0,1)$ for $z=\|z\| e^{j a r g(z)}=$ $2 e^{-j і ̈ \epsilon / 4}, 2 e^{j} 3 і ̈ € / 4$	

Discrete Probability \& Sets \& Whatever

Probability

1. $P(x)={ }^{n} C x \cdot p^{x} \cdot(1-p)^{n-x}$
2. $P(x)=(X C k)((N-X) C(n-k)) / N_{C n}$

Set Theory
$A=B$ when A subset of B \& B subset of A
$A-B=A \cap B^{\prime}$
$A \cup(A \cap B)=A$
$A \cap(A \cup B)=A$
$A \cup A^{\prime}=U$
A $n A^{\prime}=$ nullset or $\}$
Power set of S is the set of ALL SUBSETS of
S e.g. $S=\{1,2\}, P(S)=\{\{ \},\{1\},\{2\},\{1,2\}\}$
$|A|=n,|P(A)|=2 n$
Sets A and B are disjoint iff $A \cap B=\{ \}$
Cardinality of union: $\mid A$ u $B|=|A|+|B|-|A \cap B|$ Proof by induction:
Show that when $p(k)$ is true, $p(k+1)$ follows.

1. Binomial Distribution
$\mathrm{n}=$ trials, $\mathrm{x}=$ successes, $\mathrm{p}=$ probability of
success
2. Hypergeometric Distribution
$\mathrm{N}=$ deck size, $\mathrm{n}=$ draws, $\mathrm{X}=$ copies of card, k
= successes

Published 30th October, 2013.
Last updated 2nd June, 2014.
Page 1 of 1 .

Matrix Manipulations

A^{\top} : Transpose of A - Switch Rows with
Columns (R1 becomes C1, R2 becomes C2 etc.)
$-A=-1$. A
A^{-1} : Inverse of A
$A^{-1} . I=I=A . I$
$A^{-1} A=1$
Augment Identity matrix to matrix and perform Guass-Jordon elimination on both to get change Identity matrix to the Inverse.
EROs:
Switch Rows
Scale Row (Multiply entire row)
Add multiple of different row to another
A matrix A is in row echelon form if

1. The nonzero rows in A lie above all zero rows (when there is at least a nonzero row and a zero row).
2. The first nonzero entry in a nonzero row (called a pivot) lies to the right of the pivot in the row immediately above it.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

