
Guidelines for writing checks for Check_MK Cheat Sheet
by dlicudi via cheatography.com/22839/cs/4821/

Naming

 The check types should be named short
and unique. They must consist only of lower
case charac ters, digits and unders cores and
begin with a lower case character.

 Checks where one item of the check
represents one thing (e.g. fan, power supply),
should be named in singular, e.g. casa_ fan,

if, oracl e_t abl esp ace. Checks where

each item checks a quantity, e.g. number of
logins, should be named in plural (e.g.
user_ log ins, print er_ pag es). Note:

due to historic miscon ducts many existing
check types are named contrarily to this rule.
That does not mean that new checks should be
named incons ist ently as well!

 Vendor specific checks must be prefixed
with a vendor specific unique abbrev iation
(which you think of). Example: fsc_ for Fujitsu

Siemens Computers.

 Product specific checks must be prefixed
with a product abbrev iation, for example
steel hea d_s tatus for a Steelhead

appliance of Riverbed.

 SNMP based checks: if the check makes
use of a standa rdized MIB which is or might be
implem ented by more than one vendor, then
the check should not be named after the vendor
but after the MIB. An example are the hr_*
checks.

 Service descri ptions of different check types
fundam entally doing the same must be identical
(e.g. if/if6 4/ if ope rst atus). Reason:

this makes rules in main.mk simpler for the

user!

Config uration variables

 Config uration variables for main.mk should

be named after the check if they are only used
by this check. This does not hold for variables,
that are used by several checks (e.g.
files yst em_ def aul t_l evels is used by

df, hr_fs, df_ne tapp, ...)

Config uration variables (cont)

 The variable that is used for the check's
default parameters and entered in the inventory
function must be named
CHECKT YP_de fau lt_ levels (if not used

by more than one check, see above). Example:
check foo_bar has the config uration variable
foo_b ar_ def aul t_l evels.

 If a check does not use check parame ters,
the inventory function must return None as
parameter and the check function must name
the parameter argument _no_p arams.

 The name of the inventory and check
function must be prefixed with the name of the
check type, for example
inven tor y_h 3c_ lan swi tch _cpu for the

check h3c_la nsw itch.

Plugin output

Each check returns one line of text - the plugin
output (or sometimes called check output). In
order to unify things the output must be
formated according to the following rules:

 when returning measur ement values, place
exactly one space between the value an the
unit (e.g. 17.3 V). Only exception: Put no
space before a percent sign. (correct e.g.
89.4%).

 When returning measur ement values, name
the names of the quantities in upper case, then
add the value separated by a colon. Examples:
Voltage: 24.5 V, Phase: negat ive, Flux-

C apa citor: opera tional

 Do not directly use return codes or cryptic
return strings internal to the device. Instead, try
to translate them to human readable
messages. Example: Instead of
route Mon ito rFail use route monitor

has failed

Perfor mance data

Format of Perfor mance data

 Always send int or float data as
perfor mance data. Do not attach a unit. Write
temp instead of " %0.2 fC " % temp!

 If you need to omit fields in the middle of the
data list (e.g. warn or crit), add a None instead,
for example [("u sag e", usage, None, None, 0,
size)]

 If you need to omit fields at the end, simply
omit them. Do not add trailing Nones.

 Naming of perfor mance data variables:
Names consist of only lowercase letters and
unders cores (rare). Also trailing digits are
allowed (e.g. phase3).

 Naming of perfor mance data variables: The
name of the variable should be named correctly
after the thing, not after the unit. Example: use
current instead of ampere. Use size instead of
bytes.

Always use the canonical unit: send Bytes, not
KB, MB or GB. Send Celsius, not Fahren heit.
Send Bits/sec, not MBits/sec. It is the task of
the graphing tool to do a useful scaling.

Perf ormance data flag

 Only set " has _pe rfd ata " to True in
check_info if the check really produces
perfor mance data output.

PNP Graph defini tion

 Each check returning perfor mance data
must have a dedicated PNP graph definition in
pnp-te mpl ates. If the check has warning and
critical levels, the graph must display these
levels as yellow and red lines.

 PNP graphs should always use the
consol idation function MAX (there are some
rare exceptions where only MIN makes sense).

By dlicudi
cheatography.com/dlicudi/

Published 11th August, 2015.
Last updated 11th August, 2015.
Page 1 of 4.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/dlicudi/
http://www.cheatography.com/dlicudi/cheat-sheets/guidelines-for-writing-checks-for-check-mk
http://www.cheatography.com/dlicudi/
http://crosswordcheats.com

Guidelines for writing checks for Check_MK Cheat Sheet
by dlicudi via cheatography.com/22839/cs/4821/

Perfor mance data (cont)

 However: the Average value which is
printed in the labelling of the graph must use the
consol idation function AVERAGE. Using MAX
would compute the average of the maximum
values - which is totally useless.

RRA defini tion

 Each check returning perfor mance data
must also have an RRA definition specif iying
which of MAX, MIN and AVERAGE is needed
to display the graph in its current (and maybe
future) forms. These defini tions are in pnp-
rr aconf. Use a symlink here.

Perf -O- Meter

 Each check returning perfor mance data
should have a Perf-O -Meter. For checks which
are part of Check_MK the Perf-O -Meter must
be defined in
web/pl ugi ns/ per fom ete r/c hec k_m k.py. For
third- party checks it should be defined in a
separate file in web/pl ugi ns/ per fom eter.

SNMP based checks

 Only use numeric OIDs in your checks.
Name-based OIDs rely on MIB files and the
check won't work when the MIB files are not in
place. Always have your OIDs start with a root,
for example: .1.3.6.1.4.1

Simple memory checks

Many devices report memory usage in a simple
way: used and total memory in absolute terms,
or, equiva lently, used and free memory in
absolute terms.

 To ensure uniform behaviour, all these
checks should use the check_ memory function
defined in memory.in clude.

 The check group should be
memory _si mple. Note that this requires that the
check has an item. For devices with no
modules, (i.e. only one memory value) the item
should be the empty string.

 The service descri ption should be
" Mem ory " or " Memory %s" for checks with
nonempty items.

Check Layout

 All checks must follow the same layout
specified below:

 fileheader with GPL notice

 name and email address of the author - if
check was contri buted

 example output as sent by the agent

 default settings of config uration variables

 helper functions and variables, if any are
needed

 the inventory function

 the check function

 the check _info declar ation

Coding Style: Add an author

 If the check is contri buted by a third party
(i.e., not by the developers of Check_MK), the
name and email address of the contri butor
should be added as a comment, right after the
header.

Coding style: Readab ility, looks and
indents.

 Avoid long lines. Ideally, your lines shouldn't
exceed 100 chars.

 Use four spaces to indent your code. Don't
use tab chars! And if you really can't live
without tabs, set the tab width to 8 spaces.

Coding style: File Header

 For checks which are supposed to be part
of the official Check_MK project the file header
with the copyright inform ation must be present.
This will be automa tically created if you call
'make headers' in the main source directory.

Coding style: Example agent output

Including example output of the agent is very
helpful for unders tanding how the check parser
works.

Coding style: Example agent output (cont)

 TCP-Agent based checks must include an
output example of the agent. If the agent output
can have different formats or output styles,
then put an example for each kind of style the
check supports (e.g.: the output of multipath -l
has changed its layout between SLES 10 and
SLES 11).

 For SNMP based checks, at least include
examples if the kind of output is remarkable in
some respect.

Coding style: Use of lambda functions

When it comes to parse _fu nct ion,
inven tor y_f unc tion and

check _fu nct ion, the usage of lambda

functions is only allowed in order to reuse
existing functions while providing some
additional argument. Example:

"in ven tor y_f unc tio n" :
invent ory _fo oba r_g ene ric (info,
" tem per atu re")

It is not allowed to implement the function itself
as lambda expres sion. Example:

This is bad, ugly and unreadable

code!!

`'chec k_f unc tion' : lambda _no_item,
_no_pa rams, info: `

(0, " Memory used: %s" %
get_by tes _hu man _re ada ble (in t(i nfo [0
] [0]))),

Manpages

 Each check must have a check man page.
This should be:

complete

precise

terse

helpful!

 Inform ation that must be contained in the
check descri ption:

What does the check exactly do?

A definition under which circum stances the
check status will change to WARN/CRIT?

By dlicudi
cheatography.com/dlicudi/

Published 11th August, 2015.
Last updated 11th August, 2015.
Page 2 of 4.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/dlicudi/
http://www.cheatography.com/dlicudi/cheat-sheets/guidelines-for-writing-checks-for-check-mk
http://www.cheatography.com/dlicudi/
http://crosswordcheats.com

Guidelines for writing checks for Check_MK Cheat Sheet
by dlicudi via cheatography.com/22839/cs/4821/

Manpages (cont)

Which devices are supported by the check?

Does the check require some config uration of
the agent or some separate agent plugin?
(example: the logwatch check requires the
agent plugin mk_log watch to be installed)

Service Descri ptions

 Checks doing the same should always have
the same (consi stent) service descri ption.
Examples:

CPU utiliz ation services must be named CPU
utiliz ation.

Temper ature services must begin with the word
Temper ature.

Services for main RAM usage should be
named Memory used.

Services for fans should be named Fan or Fan
%s.

Services for power supplies should be named
Power Supply or Power Supply %s.

 Service descri ptions should be capita lized
like English titles, e.g. " Source of Output "

Forbidden Things

 Never use a global import statement in a
check file

 Do not use datetime for date/time parsing.
Use time. It can do all you need, really !!!

 Do not use any other modules, except: sys,
os, time, socket

 If you need regular expres sions, use the
function regex(). Do not use re directly.

 Neither the check function nor the inventory
function may use the print command, or
otherwise output any data to stdout or stderr, or
commun icate with the outside world in any other
way. An rare exception to this are checks which
need a dedicated data storage (such as
logwatch: it keeps unread log messages in
files).

Forbidden Things (cont)

 Never fetch SNMP data that is not actually
used in the check or inventory function.

Temper ature checks

 The item name should reflect the kind of
temper ature being monitored. Please refer to
the following table to make sure that the same
kinds of temper atures get the same item.

Ambient: Built-in sensor measuring ambient air
temper ature

External: An external, freely placeable sensor
connected to the device

System: System mainboard temper ature

CPU: CPU temper ature

 To ensure that all temper ature checks work
in the same way, use the check_ tem per ature
function in temper atu re.i nc lude.

 The check group should be temper ature.

 check_ tem per ature can handle device
levels and status in various ways config urable
in the temper ature WATO rule. Do not pass
both device status and device levels to
check_ tem per ature - if a device provides levels,
pass those and not the status.

 Some devices can output temper ature in
various units, and specify which unit it is. In
those cases, pass the temper ature in the unit
the device states, along with the unit as the
dev_unit parameter to check_ tem per ature.

 Some devices have a very large number of
similar temper ature sensors, where one item
per sensor would be unreas onable. (Dozens of
ambient temper ature sensors in a small device
do not really provide more inform ation than a
single one.) In those cases, use the
check_ tem per atu re_list function defined in
temper atu re.i nc lude. Use the temper ature
check group just as you would for regular
temper ature checks.

Setting default values for config uration
variables

 Default values for check parameters (e.g.
switc h_c pu_ def aul t_l evels) must be

chosen in a way that they make sense for
every body, not just for your special case. If
case you are unsure, rather choose too loose
than too tight levels. This helps avoid false
alarms.

 If you set default values, add a short
comment about how you came to choose said
values. If it is merely a rough estimate,
document that it is, if you got them from a very
specific source, document where you got them.

Reuse of config uration variables

 If the same config uration variable is used in
multiple checks, it must be set to a default
value in all checks and the values must be
identical!

Error handling

 Your check should assume that the agent is
always producing valid data. It should not try to
handle cases when the agent output is broken.
Reason: broken agent output is already
handled by Check_MK via Python except ions.
Interc epting these exceptions in your check
code makes debugging of broken outputs much
more difficult.

 Do not handle cases in the agent output for
which you have no indication that they can
actually happen.

int() vs. saveint() and float

 vs. savef loat() int() will throw an

exception if the argument is not a valid number
string (or if it is empty). Check_MK will catch
the exception and make the check result
" UNK NOW N" with an approp riate error
message. savei nt(), however, will assume

0 if the argument cannot be converted to a valid
integer.

By dlicudi
cheatography.com/dlicudi/

Published 11th August, 2015.
Last updated 11th August, 2015.
Page 3 of 4.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/dlicudi/
http://www.cheatography.com/dlicudi/cheat-sheets/guidelines-for-writing-checks-for-check-mk
http://www.cheatography.com/dlicudi/
http://crosswordcheats.com

Guidelines for writing checks for Check_MK Cheat Sheet
by dlicudi via cheatography.com/22839/cs/4821/

int() vs. saveint() and float (cont)

 Use savei nt() in all cases when you

know or suspect that your device may supply
invalid data, but the check should work with the
rest of the data and produce useful results.
Disadv antage: you may never find out that the
device has supplied invalid data, because the
check wont tell you !

 Use int() in all other cases, e.g. if you

want to be notified with an exception if the
check has received invalid data from your
device. In most cases this is what you want !

Interp ret ation of levels

 Many checks have parameters defining
warning and critical levels which are compared
to an actual value. Please observe the
following important rules and conven tions if you
are writting such checks.

 Warning and critical levels should always
be checked with >= and <=. Example: a check
monitors the length of a mail queue. The critical
upper level is at 100. This means that if the
length is exactly 100, the check should already
be critical. There might be a few exceptions to
this where this wouldn't make sense.

 If there are both upper and lower levels, the
labelling should be: Warning at or above ___,
Critical at or above ___, Warning at or below
___ and Critical at or below ___.

 If there are both upper and lower levels, the
labelling should be: Warning at or above ___,
Critical at or above ___, Warning at or below
___ and Critical at or below ___.

return versus yield

 A check function producing several
subresults (e.g. current usage and growth)
must use the yield function for returning these

results. On the other hand, check generating
exactly one result must use return.

check_ inf o[...] keys

 Do not add keys here which are not used.
The only mandatory keys are
" se rvi ce_ des cri pti on" and

" ch eck _fu nct ion ". Add

" ha s_p erf dat a" and other keys with a

boolean value only if its value is True.

Various

Here are some frequent errors and further
mixed guidel ines:

 If your check is accomp anied by an agent
plugin, you should observe the following rules:

Put it into share/ che ck_ mk/ agents for UNIX like
systems and make it executable (mode 755).

Put it into share/ che ck_ mk/ age nts /wi ndows for
Windows.

Do not add a file extension like .sh or .py.

For shell scripts, add #!/bin/sh in the first line.
Use #!/bin /bash only if the BASH is really
required.

Add the standard Check_MK file header with
the GPL notice.

Make sure that the plugin does not do any
harm even if installed on a system where the
check in question is not relevant or does not
work.

Make sure that the check manpage tells the
user that the plugin is needed and which
additional software needs to be installed in
order to make it work.

The plugin must not output a section header if
the tool or technology to be monitored does not
exist on the system.

If the plugin needs a config uration file, expect it
in $MK_CO NFDIR and give it the same name
as the plugin, but with the extension .cfg, and
with any mk_ prefix removed.

Various (cont)

 A check which does not get the inform ation
which is needed decide whether or not the
check is OK, must simply return None. This
can be the case when a check with an item can
not found the data matching this item in the
agent output or SNMP data. Another possible
situation is when the data provided by the
agent or SNMP is completely empty.

When a check returns None, Check_MK will
produce an UNKNOWN state with a state
output which tells the user that this thing could
not be found.

 The state markers (!) and (!!) must only be
used in checks which can go warning or critical
for several different reasons, like sub-ch ecks.

 Your check must also work with Nagios as
Core. If you use functions or variables from
*.include files then you must declare them in
check_info in the key " inc lud es" and you must
then test our check with Nagios as the core.

By dlicudi
cheatography.com/dlicudi/

Published 11th August, 2015.
Last updated 11th August, 2015.
Page 4 of 4.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/dlicudi/
http://www.cheatography.com/dlicudi/cheat-sheets/guidelines-for-writing-checks-for-check-mk
http://www.cheatography.com/dlicudi/
http://crosswordcheats.com

	Guidelines for writing checks for Check_MK Cheat Sheet - Page 1
	Naming
	Performance data
	Plugin output
	Configuration variables

	Guidelines for writing checks for Check_MK Cheat Sheet - Page 2
	Check Layout
	Coding style: Use of lambda functions
	Coding Style: Add an author
	Coding style: Readability, looks and indents.
	Simple memory checks
	Coding style: File Header
	Manpages
	Coding style: Example agent output

	Guidelines for writing checks for Check_MK Cheat Sheet - Page 3
	Setting default values for configuration variables
	Temperature checks
	Service Descriptions
	Reuse of configuration variables
	Error handling
	Forbidden Things
	int() vs. saveint() and float

	Guidelines for writing checks for Check_MK Cheat Sheet - Page 4
	check_info[...] keys
	Various
	Interpretation of levels
	return versus yield

