\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{dimples} \pdfinfo{ /Title (abstract-algebra.pdf) /Creator (Cheatography) /Author (dimples) /Subject (Abstract Algebra Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{FF4073} \definecolor{LightBackground}{HTML}{FFF3F6} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Abstract Algebra Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{dimples} via \textcolor{DarkBackground}{\uline{cheatography.com/207890/cs/44440/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}dimples \\ \uline{cheatography.com/dimples} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 24th September, 2024.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{x{2.23965 cm} x{2.73735 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Definition of Groups}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Binary Operation}} & Let G be a set. A binary operation on G is a function that assigns each ordered pair of elements of G an element of G. \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} {\bf{Group}} & Let G be a set together with a binary operation (usually called multiplication) that assigns to each ordered pair (a, b) of elements of G an element in G denoted by ab. We say G is a group under this operation if the following three properties are satisfied. \tn % Row Count 18 (+ 12) % Row 2 \SetRowColor{LightBackground} {\bf{Properties to Satisfy (Group)}} & 1. Closure 2. Associativity 3. Identity 4. Inverses \tn % Row Count 21 (+ 3) % Row 3 \SetRowColor{white} {\bf{Abelian group}} & If a group has the property that ab = ba for every pair of elements a and b, we say the group is Abelian. \tn % Row Count 26 (+ 5) % Row 4 \SetRowColor{LightBackground} {\bf{Associativity}} & The operation is associative; that is, (ab)c = a(bc) for all a, b, c in G. \tn % Row Count 30 (+ 4) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{x{2.23965 cm} x{2.73735 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Definition of Groups (cont)}} \tn % Row 5 \SetRowColor{LightBackground} {\bf{Identity}} & There is an element e (called the identity) in G such that ae = ea = a for all a in G. \tn % Row Count 4 (+ 4) % Row 6 \SetRowColor{white} {\bf{Inverses}} & For each element a in G, there is an element b in G (called an inverse of a) such that ab = ba = e. \tn % Row Count 9 (+ 5) % Row 7 \SetRowColor{LightBackground} {\bf{Modular Arithmetic}} & When a = qn + r, where q is the quotient and r is the remainder upon dividing a by n, we write a mod n = r. \tn % Row Count 14 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Elementary Properties of Groups}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Theorem 2.1 Uniqueness of the Identity}} & In a group G, there is only one identity element. \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} {\bf{Theorem 2.2 Cancellation}} & In a group G, the right and left cancellation laws hold; that is, ba = ca implies b = c, and ab = ac implies b = c. \tn % Row Count 9 (+ 6) % Row 2 \SetRowColor{LightBackground} {\bf{Theorem 2.3 Uniqueness of Inverses}} & For each element a in a group G, there is a unique element b in G such that ab = ba = e. \tn % Row Count 14 (+ 5) % Row 3 \SetRowColor{white} {\bf{Theorem 2.4 Socks-Shoes Property}} & For group elements a and b, (ab)\textasciicircum{}-1\textasciicircum{} = b\textasciicircum{}-1\textasciicircum{}a\textasciicircum{}-1\textasciicircum{}. \tn % Row Count 17 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.33919 cm} x{2.63781 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Subgroup Tests}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{One-Step Subgroup Test}} & Let G be a group and H a nonempty subset of G. If ab\textasciicircum{}-1\textasciicircum{} is in H whenever a and b are in H, then H is a subgroup of G. (In additive notation, if a - b is in H whenever a and b are in H, then H is a subgroup of G.) \tn % Row Count 11 (+ 11) % Row 1 \SetRowColor{white} {\bf{Two-Step Subgroup Test}} & Let G be a group and let H be a nonempty subset of G. If ab is in H whenever a and b are in H (H is closed under the operation), and a\textasciicircum{}-1\textasciicircum{} is in H whenever a is in H (H is closed under taking inverses), then H is a subgroup of G. \tn % Row Count 22 (+ 11) % Row 2 \SetRowColor{LightBackground} {\bf{Theorem 3.3 Finite Subgroup Test}} & Let H be a nonempty finite subset of a group G. If H is closed under the operation of G, then H is a subgroup of G. \tn % Row Count 28 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.33919 cm} x{2.63781 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Examples of Subgroups}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Theorem 3.4 \textless{}a\textgreater{} Is a Subgroup}} & Let G be a group, and let a be any element of G. Then, \textless{}a\textgreater{} is a subgroup of G. \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} {\bf{Center of a Group}} & The center, Z(G), of a group G is the subset of elements in G that commute with every element of G. In symbols, \{\{nl\}\} {\bf{Z(G) = \{a ∈ G | ax = xa for all x in G\}}}. \tn % Row Count 12 (+ 8) % Row 2 \SetRowColor{LightBackground} {\bf{Theorem 3.5 Center Is a Subgroup}} & The center of a group G is a subgroup of G. \tn % Row Count 15 (+ 3) % Row 3 \SetRowColor{white} {\bf{Centralizer of a in G}} & Let a be a fixed element of a group G. The centralizer of a in G, C(a), is the set of all elements in G that commute with a. In symbols, \{\{nl\}\} {\bf{C(a) = \{g ∈ G | ga = ag\}}}. \tn % Row Count 24 (+ 9) % Row 4 \SetRowColor{LightBackground} {\bf{Theorem 3.6 C(a) Is a Subgroup}} & For each a in a group G, the centralizer of a is a subgroup of G. \tn % Row Count 28 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.84149 cm} x{3.13551 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Terminology and Notation}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Order of a Group}} & The number of elements of a group (finite or infinite) is called its order. We will use |G| to denote the order of G. \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} {\bf{Order of an Element}} & The order of an element g in a group G is the smallest positive integer n such that g\textasciicircum{}n\textasciicircum{} = e. (In additive notation, this would be ng = 0.) If no such integer exists, we say that g has infinite order. The order of an element g is denoted by |g|. \tn % Row Count 15 (+ 10) % Row 2 \SetRowColor{LightBackground} {\bf{Subgroup}} & If a subset H of a group G is itself a group under the operation of G, we say that H is a subgroup of G. \tn % Row Count 20 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}