Cheatography

Abstract Algebra Cheat Sheet by dimples via cheatography.com/207890/cs/44440/

Definition of Groups			
Binary Operation	Let G be a set. A binary operation on G is a function that assigns each ordered pair of elements of G an element of G.		
Group	Let G be a set together with a binary operation (usually called multiplication) that assigns to each ordered pair (a, b) of elements of G an element in G denoted by ab. We say G is a group under this operation if the following three properties are satisfied.		
Properties to Satisfy (Group)	1. Closure 2. Associativity 3. Identity 4. Inverses		
Abelian group	If a group has the property that ab = ba for every pair of elements a and b, we say the group is Abelian.		
Associ- ativity	The operation is associative; that is, (ab)c = a(bc) for all a, b, c in G.		

Definition of Groups (cont)			
Identity	There is an element e (called the identity) in G such that ae = ea = a for all a in G.		
Inverses	For each element a in G, there is an element b in G (called an inverse of a) such that ab = ba = e.		
Modular Arithmetic	When a = qn + r, where q is the quotient and r is the remainder upon dividing a by n, we write a mod n = r.		
Elementary Properties of Groups			

Theorem 2.1 Uniqueness of the Identity	In a group G, there is only one identity element.
Theorem 2.2 Cancel- lation	In a group G, the right and left cancellation laws hold; that is, ba = ca implies $b = c$, and $ab = ac$ implies $b = c$.
Theorem 2.3 Uniqueness of Inverses	For each element a in a group G, there is a unique element b in G such that ab = ba = e.
Theorem 2.4 Socks Shoes Property	For group elements a and b, $(ab)^{-1} = b^{-1}a^{-1}$.

Subgroup Tests		
One-Step Subgroup Test	Let G be a group and H a nonempty subset of G. If ab ⁻¹ is in H whenever a and b are in H, then H is a subgroup of G. (In additive notation, if a - b is in H whenever a and b are in H, then H is a subgroup of G.)	
Two-Step Subgroup Test	Let G be a group and let H be a nonempty subset of G. If ab is in H whenever a and b are in H (H is closed under the operation), and a^{-1} is in H whenever a is in H (H is closed under taking inverses), then H is a subgroup of G.	
Theorem 3.3 Finite Subgroup Test	Let H be a nonempty finite subset of a group G. If H is closed under the operation of G, then H is a subgroup of G.	

By dimples

cheatography.com/dimples/

Not published yet. Last updated 24th September, 2024. Page 1 of 2.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Cheatography

Abstract Algebra Cheat Sheet by dimples via cheatography.com/207890/cs/44440/

ogy and Notation (cont)

The order of an element g in a group G is the smallest positive integer n such that $g^n = e$. (In additive notation, this would be ng = 0.) If no such integer exists, we say that g has infinite order. The order of an element g is denoted by |g|. If a subset H of a group G is

itself a group under the operation of G, we say that H

is a subgroup of G.

Examples of	of Subgroups	Terminology
Theorem 3.4 <a> Is a Subgroup	Let G be a group, and let a be any element of G. Then, <a> is a subgroup of G.	Order of an Element
Center of a Group	The center, Z(G), of a group G is the subset of elements in G that commute with every element of G. In symbols,	
	$Z(G) = \{a \in G \mid ax = xa \text{ for all } x \\ in G\}.$	Subgroup
Theorem 3.5 Center Is a Subgroup	The center of a group G is a subgroup of G.	
Centra- lizer of a in G	Let a be a fixed element of a group G. The centralizer of a in G, C(a), is the set of all elements in G that commute with a. In symbols, $C(a) = \{g \in G \mid ga = ag\}.$	
Theorem 3.6 C(a) Is a Subgroup	For each a in a group G, the centralizer of a is a subgroup of G.	

Terminology and Notation

 Order
 The number of elements of a

 of a
 group (finite or infinite) is called its

 Group
 order. We will use |G| to denote the order of G.

By dimples

cheatography.com/dimples/

Not published yet. Last updated 24th September, 2024. Page 2 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com