Cheatography

Chem20 Acids & Bases Cheat Sheet by Diana D (dianadavis) via cheatography.com/134628/cs/27802/

Properties of Acids

Conducts electricity

Tastes sour

Neutralizes bases

Reacts with metals to form hydrogen gas

pH between 0-7

Corrodes metals

Strong Acids vs Weak Acids

Reacts completely	Reacts incomp-
(>99%) with water to	letely with water
produce a high	(<50%) to form
concentration of	relatively few
hydronium ions	hydronium ions
Low pH	Relatively high pH
High electrical conductivity	Relatively low conductivity
High rate of reaction with metals and	Low rate of
carbonates	active metals and carbonates

Properties of Bases

Conducts electricity

Tastes bitter

Neutralizes acids

pH between 7-14

Dissolves grease

Feels slippery/soapy

Strong Bases vs Weak Bases		
Dissociates completely (>99%)	Reacts partially with water (<50%)	
High pH (closer to 14)	Lower pH (closer to 8)	
Faster reaction rate	Slower reaction rate	
High conductivity	Low conductivity	

Classical Naming of Acids

Ending in -ide	hydroic acid
Ending in -ate	ic acid
Ending in -ite	ous acid

Classical Naming of Bases

Generally ionic hydroxides

Use the standard ionic naming (NaOH is sodium hydroxide)

Bronsted-Lowry Acid-Base Concept

Bronsted-Lowry Acid: a proton donor Bronsted-Lowry Base: a proton acceptor

Neutralization

 $H_3O^+(aq) + OH^-(aq) \rightarrow 2 H_2O(l)$

Neutralization: a type of double replacement between an acid and a base

Amphoteric Substances

Amphoteric Substances: substances that can react as an acid or as a base

pH Chart

Conjugate Acids & Bases

conjugate pair	
Ļ	1.3%
$CH_3COOH(aq) + H_2O(l)$	\Rightarrow CH ₃ COO ⁻ (aq) + H ₃ O ⁺ (aq) (0.10 mol/L at 25 °C)
î	î
	conjugate pair

In a proton transfer reaction at equilibrium, both forward and reverse reactions involve Bronsted-Lowrey acids and bases **Conjugate Acids/Bases:** a pair on substances with formulas that differ only by a proton

Published 30th April, 2021. Last updated 30th April, 2021. Page 1 of 1.

Monoprotic & Polyprotic Acids

Monoprotic Acids: only have one acidic hydrogen ion in their compound formula and can *react only once with water* to produce hydronium ions

- Most strong acids and some weak acids are monoprotic acids

- Ex. Monoprotic Acids: HCI and HCN

Polyprotic Acids: contain more than one acidic hydrogen in their compound formula and can *react more than once* with water

- Generally weak acids whose reaction with water decreases with each successive step

- Exception is sulfuric acid because the first reaction is essentially complete

- Ex. Polyprotic Acid: H3PO4

Monoprotic & Polyprotic Bases

Monoprotic Bases: can react with water only once to produce hydroxide ions - Ex. CH3COO-

Polyprotic Bases: weak bases whose reaction with water decreases with each successive step

- Ex. CO3 2-

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

By Diana D (dianadavis) cheatography.com/dianadavis/