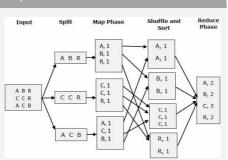

Cheatography

Tech Interview Cheat Sheet by DesertGarnet via cheatography.com/130725/cs/30906/

Basic System Design		
Presen- tation Layer	User interface, caching, valida- tion, single page or multi page	
Business	Logic/workflows, reuse	
Layer	common logic	
Data	Entity objects that pass data,	
Layer	database type. SQL vs NoSQL	

Also consider security of application.

Consider the following guidelines for deployment:


Consider using non-distributed

deployment to maximize performance.

 Consider using distributed deployment to achieve better scalability and to allow each layer

to be secured separately.

Map Reduce

The MapReduce algorithm contains two important tasks, namely Map and Reduce. The Map task takes a set of data and converts it into another set of data, where individual elements are broken down into tuples (key-value pairs).

The Reduce task takes the output from the Map as an input and combines those data tuples (key-value pairs) into a smaller set of tuples.

SQL vs NoSQL

SQL	Language used for relational databases
	Scaled vertically by increasing power (more common), scaled horizontally by partitioning
	Tables and columns, rows, Have constrained logical relationships
	Must exhibit ACID properties
	MS-SQL, Oracle, Access, Ingress
NoSQL	Language used for non relational dbs
	Scales better horizontally using master-slave architecture
	Multiple formats: Column, Key- Value, Document, Graph

SQL vs NoSQL (cont)			
	Adheres	s to CAP	
	Mongo CouchD	DB, DynamoD DB	Β,
Use SQL when:	data is s	small	
	Concep tabular	tually modeled	d as
	consiste	ency is critical	
Use NoSQL when:	Graph c	or hierarchial d	ata
		ts which are b tate significant	-
		ses growing e lacking data s	•
		0	
Durability	-	onsistency, Is	
Durability CAP - Cor	nsistency,	onsistency, Is	
Durability CAP - Cor tolerance	nsistency,	onsistency, Is	
Durability CAP - Cor tolerance	nsistency,	onsistency, Is	
Durability CAP - Cor tolerance Algorithms Algorithm Insertion	BEST	Availabity, Pa	WORST

Quick Sort works better for small arrays Merge Sort works better for linked lists and is consistent for any size of data

By DesertGarnet

Not published yet. Last updated 25th February, 2022. Page 1 of 2. Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/desertgarnet/

Cheatography

Tech Interview Cheat Sheet
by DesertGarnet via cheatography.com/130725/cs/30906/

Sorts the elements or a portion of the elements in

Reverses the order of the

An algorithm that searches a tree

(or graph) by searching levels of

the tree first, starting at the root. Moves left to right on level, tracking children. Then moves to

An algorithm that searches a tree

(or graph) by searching depth of

the tree first, starting at the root. It traverses left down a tree until

traverses back up trying the right child of nodes on that branch, and if possible left from the right

it cannot go further

elements in the List<T> or a

the List<T>

portion of it.

next level

children

C# List Methods (cont)

Sort()

Reverse()

Breadth

Search

Depth

First

Search

First

Sort is QuickSort

C# String Methods		
Compar- eTo()	Compare two strings	str2.C- ompare- To(- str1)
IndexOf()	Returns the index position of first occurrence of character	<pre>str1.I- ndexOf- (``:")</pre>
Remove()	deletes all the characters from beginning to specified index position.	str1.R- emo- ve(i);
Replace()	replaces the specified character with another	<pre>str1.R- eplace- ('old', 'new');</pre>
Substr- ing()	his method returns substring.	str1.S- ubstri- ng(1, 7);
Substring Substring length	g(Int32) g(Int32, Int32)	//start,

C# List Methods

Binary- Search()	Uses a binary search algorithm to locate a specific element in the sorted List <t> or a portion of it.</t>
Conver- tAll(C- onv- erter)	Converts the elements in the current List <t> to another type, and returns a list containing the converted elements.</t>
IndexOf()	Returns the zero-based index of the first occurrence of a value in the List <t> or in a portion of it.</t>

By DesertGarnet

Not published yet. Last updated 25th February, 2022. Page 2 of 2. Sponsored by Readable.com Measure your website readability! https://readable.com

Search Basics (cont)	
	When finished examining a branch it moves to the node right of the root then tries to go left on all it's children until it reaches the bottom.
When to use BFS:	Optimal for searching a tree that is wider than it is deep
	Uses a queue to store information about the tree while it traverses a tree so uses more memory than DFS
When to use DFS	Optimal for searching a tree that is deeper than it is wide.
	Uses a stack to push nodes onto.

cheatography.com/desertgarnet/