
C# API Tech Interview Cheat Sheet
by DesertGarnet via cheatography.com/130725/cs/30936/

API Best PracticesAPI Best Practices

Use JSON for sending and receiving data

Use noun instead of verbs in endpoints. EX:EX:
https://mysite.com/getPosts should be
https://mysite.com/posts

Collections should use plural nouns. EX:EX:
https://mysite.com/post/123 should be
https://mysite.com/posts/123

Use status codes for error handling

Use nesting on endpoints to show relations‐
hips. EX:EX: https://mysite.com/posts/author

Use filtering, sorting, and pagination so
retrieve data requested. EX:EX: https://mysi‐
te.com/posts?tags=javascript

Use SSL for Security. EX:EX: https://mysite.c‐
om/posts runs on SSL and http://mysite.c‐
om/posts does not run on SSL

Be Clear with Versioning. Common
versioning system in semantic versioning.
EX:EX: 1.2.3 where 1 is the major version, 2 is
the minor version, and 3 is the patch
version. https://mysite.com/v1/

Provide accurate API documentation. EX:EX:
Swagger, Postman

HTTP HeadersHTTP Headers

HTTP headers let the client and the server
pass additional information with an HTTP
request or response.

Request headersRequest headers contain more information
about the resource to be fetched, or about
the client requesting the resource.

Response headersResponse headers hold additional inform‐
ation about the response, like its location or
about the server providing it

Representation headersRepresentation headers contain information
about the body of the resource, like its
MIME type, or encoding/compression
applied.

Payload headersPayload headers contain representation-‐
independent information about payload
data, including content length and the
encoding used for transport.

Design Patterns - BasicsDesign Patterns - Basics

Types of
Design
Patterns

Creational, Structural,
Behavioral

SOLIDSOLID Principles

SSingle
Responsibility
Principle

A class changes for only
one reason

OOpen/Closed
Principle

A class should be open for
extension, closed for
editing

LLiskov's
Substitution
Principle

Derived types should
cleanly and easily replace
base types

IInterface
Segregation
Principle

Favor multiple single-pu‐
rpose interfaces over
composite

DDependency
Inversion
Principle

Concrete classes depend
on abstractions, not vice-
versa

What are design patterns?What are design patterns?
Design patterns are solutions to software
design problems you find again and again
in real-world application development.
Patterns are about reusable designs and
interactions of objects.

Design Patterns - SingletonDesign Patterns - Singleton

SingletonSingleton is a creational design pattern,
which ensures that only one object of its
kind exists and provides a single point of
access to it for any other code. Singleton
has almost the same pros and cons a

Advantages: Singleton pattern can
implement interfaces. Can be lazy-loaded
and has Static Initialization. It helps to hide
dependencies. It provides a single point of
access to a particular instance, so it is easy
to maintain.

Disadvantages: Unit testing is a bit difficult
as it introduces a global state into an
application. Reduces the potential for
parallelism within a program by locking.

Design Patterns - CreationalDesign Patterns - Creational

Abstract
Factory

Provide an interface for
creating families of related or
dependent objects without
specifying their concrete
classes.

Builder Separate the construction of a
complex object from its repres‐
entation so that the same
construction processes can
create different represent‐
ations.

Factory
Method

Define an interface for creating
an object, but let the
subclasses decide which class
to instantiate. Factory Method
lets a class defer instantiation
to subclasses.

Prototype Specify the kinds of objects to
create using a prototypical
instance, and create new
objects by copying this
prototype.

Singleton Ensure a class only has one
instance, and provide a global
point of access to it.

Design Patterns - StructuralDesign Patterns - Structural

Adapter Convert the interface of a
class into another interface
clients expect. Adapter lets
classes work together that
couldn’t otherwise because of
incompatibility interfaces.

Bridge Decouple an abstraction from
its implementation so that the
two can vary independently.

Composite Compose objects into tree
structures to represent part-
whole hierarchies. Composite
lets clients treat individual
objects and compositions of
objects uniformly.

By DesertGarnetDesertGarnet

cheatography.com/desertgarnet/

Not published yet.
Last updated 28th February, 2022.
Page 1 of 3.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/desertgarnet/
http://www.cheatography.com/desertgarnet/cheat-sheets/c-api-tech-interview
https://mysite.com/getPosts
https://mysite.com/posts
https://mysite.com/post/123
https://mysite.com/posts/123
https://mysite.com/posts/author
https://mysite.com/posts?tags=javascript
https://mysite.com/posts
http://mysite.com/posts
https://mysite.com/v1/
http://www.cheatography.com/desertgarnet/
https://readable.com

C# API Tech Interview Cheat Sheet
by DesertGarnet via cheatography.com/130725/cs/30936/

Design Patterns - Structural (cont)Design Patterns - Structural (cont)

Decorator Attach additional responsib‐
ilities to an object dynamically.
Decorators provide a flexible
alternative to subclassing for
extending functionality.

Facade Provide a unified interface to a
set of interfaces in a system.
Façade defines a higher-level
interface that makes the
subsystem easier to use.

Flyweight Use sharing to support large
numbers of fine-grained
objects efficiently. A flyweight
is a shared object that can be
used in multiple contexts
simultaneously. The flyweight
acts as an independent object
in each context; it’s indisting‐
uishable from an instance of
the object that’s not shared.

Proxy Provide a surrogate or placeh‐
older for another object to
control access to it.

Design Patterns - Factory MethodDesign Patterns - Factory Method

The Factory MethodFactory Method is one of the most
known Design Patterns and often used
when creating things with same behavior,
but with different specifications.

EX: Things with same behaviour, but
different specifications: Animal Factory,
Logistics Factory (delivery method or
transport vehicle)

Classes to be created cannot be determined
in advance, therefore an abstract interface
is provided which can be reached via a
function

A class expects from its subclasses a
specification of the products to be created

Specialization options for subclasses, as
this pattern provides an extended version of
the object compared to the direct creation of
the object

Design Patterns - BehavioralDesign Patterns - Behavioral

Chain of
Resp.

Avoid coupling the sender of a
request to its receiver by
giving more then one object a
chance to handle the request.
Chain the receiving objects
and pass the request along
the chain until an object
handles it.

Command Encapsulate a request as an
object, thereby letting you
parameterize clients with
different requests, queue or
log requests, and support
undoable operations.

Interpreter Given a language, define a
representation for its grammar
along with an interpreter that
uses the representation to
interpret sentences in the
language.

Iterator Provide a way to access the
elements of an aggregate
object sequentially without
exposing its underlying
representation.

Mediator Define an object that encaps‐
ulates how a set of objects
interact. Mediator promotes
loose coupling by keeping
objects from referring to each
other explicitly, and lets you
vary their interaction indepe‐
ndently.

Memento Without violating encapsula‐
tion, capture and externalize
an object’s internal state so
that the object can be restored
to this state later.

Design Patterns - Behavioral (cont)Design Patterns - Behavioral (cont)

Observer Define a one-to-many
dependency between objects
so that when one object
changes state, all its
dependents are notified and
updated automatically.

State Allow an object to alter its
behavior when its internal state
changes. The object will appear
to change its class.

Strategy Defines a family of algorithms,
encapsulates each one, and
make them interchangeable.
Strategy lets the algorithm vary
independently from clients who
use it.

Template
Method

Define a skeleton of an
algorithm in an operation,
deferring some steps to subcla‐
sses. Template Method lets
subclasses redefine certain
steps of an algorithm without
changing the algorithms
structure.

Visitor Represent an operation to be
performed on the elements of
an object structure. Visitor lets
you define a new operation
without changing the classes of
the elements on which it
operates.

Dependency Injection PatternDependency Injection Pattern

Dependency Injection (DI) is a design
pattern used to implement IoCIoC. It allows the
creation of dependent objects outside of a
class and provides those objects to a class
through different ways. Using DI, we move
the creation and binding of the dependent
objects outside of the class that depends on
them.

By DesertGarnetDesertGarnet

cheatography.com/desertgarnet/

Not published yet.
Last updated 28th February, 2022.
Page 2 of 3.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/desertgarnet/
http://www.cheatography.com/desertgarnet/cheat-sheets/c-api-tech-interview
http://www.cheatography.com/desertgarnet/
https://readable.com

C# API Tech Interview Cheat Sheet
by DesertGarnet via cheatography.com/130725/cs/30936/

Dependency Injection Pattern (cont)Dependency Injection Pattern (cont)

The Dependency Injection pattern involves
3 types of classes:
Client Class:Client Class: The client class (dependent
class) is a class which depends on the
service class.
Service Class:Service Class: The service class (depen‐
dency) is a class that provides service to the
client class.
Injector Class:Injector Class: The injector class injects the
service class object into the client class.

Repository Design PatternRepository Design Pattern

The Repository Design Pattern in C#
Mediates between the domain and the data
mapping layers using a collection-like
interface for accessing the domain objects.
This isolates the data access code from the
rest of the application.

Advantages: Changes can be done in one
place. Testing the controller is easier as you
don't have to test against the database.

By DesertGarnetDesertGarnet

cheatography.com/desertgarnet/

Not published yet.
Last updated 28th February, 2022.
Page 3 of 3.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/desertgarnet/
http://www.cheatography.com/desertgarnet/cheat-sheets/c-api-tech-interview
http://www.cheatography.com/desertgarnet/
https://readable.com

	C# API Tech Interview Cheat Sheet - Page 1
	API Best Practices
	Design Patterns - Basics
	Design Patterns - Creational
	HTTP Headers
	Design Patterns - Structural
	Design Patterns - Singleton

	C# API Tech Interview Cheat Sheet - Page 2
	Design Patterns - Behavioral
	Design Patterns - Factory Method
	Dependency Injection Pattern

	C# API Tech Interview Cheat Sheet - Page 3
	Repository Design Pattern

