
C# API Tech Interview Cheat Sheet
by DesertGarnet via cheatography.com/130725/cs/30936/

API Best PracticesAPI Best Practices

Use JSON for sending and receiving data

Use noun instead of verbs in endpoints. EX:EX:
https:​//m​ysi​te.c​om​/ge​tPosts should be
https:​//m​ysi​te.c​om​/posts

Collec​tions should use plural nouns. EX:EX:
https:​//m​ysi​te.c​om​/po​st/123 should be
https:​//m​ysi​te.c​om​/po​sts/123

Use status codes for error handling

Use nesting on endpoints to show relati​ons​‐
hips. EX:EX: https:​//m​ysi​te.c​om​/po​sts​/author

Use filtering, sorting, and pagination so
retrieve data requested. EX:EX: https:​//m​ysi​‐
te.c​om​/po​sts​?ta​gs=​jav​ascript

Use SSL for Security. EX:EX: https:​//m​ysi​te.c​‐
om​/posts runs on SSL and http:/​/my​sit​e.c​‐
om/​posts does not run on SSL

Be Clear with Versio​ning. Common
versioning system in semantic versio​ning.
EX:EX: 1.2.3 where 1 is the major version, 2 is
the minor version, and 3 is the patch
version. https:​//m​ysi​te.c​om/v1/

Provide accurate API docume​nta​tion. EX:EX:
Swagger, Postman

HTTP HeadersHTTP Headers

HTTP headers let the client and the server
pass additional inform​ation with an HTTP
request or response.

Request headersRequest headers contain more inform​ation
about the resource to be fetched, or about
the client requesting the resource.

Response headersResponse headers hold additional inform​‐
ation about the response, like its location or
about the server providing it

Repres​ent​ation headersRepres​ent​ation headers contain inform​ation
about the body of the resource, like its
MIME type, or encodi​ng/​com​pre​ssion
applied.

Payload headersPayload headers contain repres​ent​ati​on-​‐
ind​epe​ndent inform​ation about payload
data, including content length and the
encoding used for transport.

Design Patterns - BasicsDesign Patterns - Basics

Types of
Design
Patterns

Creati​onal, Struct​ural,
Behavioral

SOLIDSOLID Principles

SSingle
Respon​​si​b​ility
Principle

A class changes for only
one reason

OOpen/Closed
Principle

A class should be open for
extension, closed for
editing

LLiskov's
Substi​​tution
Principle

Derived types should
cleanly and easily replace
base types

IInterface
Segreg​​ation
Principle

Favor multiple single​​-p​u​‐
rpose interfaces over
composite

DDependency
Inversion
Principle

Concrete classes depend
on abstra​​ct​ions, not vice-
versa

What are design patterns?What are design patterns?
Design patterns are solutions to software
design problems you find again and again
in real-world applic​ation develo​pment.
Patterns are about reusable designs and
intera​ctions of objects.

Design Patterns - SingletonDesign Patterns - Singleton

SingletonSingleton is a creational design pattern,
which ensures that only one object of its
kind exists and provides a single point of
access to it for any other code. Singleton
has almost the same pros and cons a

Advant​ages: Singleton pattern can
implement interf​aces. Can be lazy-l​oaded
and has Static Initia​liz​ation. It helps to hide
depend​encies. It provides a single point of
access to a particular instance, so it is easy
to maintain.

Disadv​ant​ages: Unit testing is a bit difficult
as it introduces a global state into an
applic​ation. Reduces the potential for
parall​elism within a program by locking.

Design Patterns - CreationalDesign Patterns - Creational

Abstract
Factory

Provide an interface for
creating families of related or
dependent objects without
specifying their concrete
classes.

Builder Separate the constr​uction of a
complex object from its repres​‐
ent​ation so that the same
constr​uction processes can
create different repres​ent​‐
ations.

Factory
Method

Define an interface for creating
an object, but let the
subclasses decide which class
to instan​tiate. Factory Method
lets a class defer instan​tiation
to subcla​sses.

Prototype Specify the kinds of objects to
create using a protot​ypical
instance, and create new
objects by copying this
prototype.

Singleton Ensure a class only has one
instance, and provide a global
point of access to it.

Design Patterns - StructuralDesign Patterns - Structural

Adapter Convert the interface of a
class into another interface
clients expect. Adapter lets
classes work together that
couldn’t otherwise because of
incomp​ati​bility interf​aces.

Bridge Decouple an abstra​ction from
its implem​ent​ation so that the
two can vary indepe​nde​ntly.

Composite Compose objects into tree
structures to represent part-
whole hierar​chies. Composite
lets clients treat individual
objects and compos​itions of
objects uniformly.

By DesertGarnetDesertGarnet

cheatography.com/desertgarnet/

Not published yet.
Last updated 28th February, 2022.
Page 1 of 3.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/desertgarnet/
http://www.cheatography.com/desertgarnet/cheat-sheets/c-api-tech-interview
https://mysite.com/getPosts
https://mysite.com/posts
https://mysite.com/post/123
https://mysite.com/posts/123
https://mysite.com/posts/author
https://mysite.com/posts?tags=javascript
https://mysite.com/posts
http://mysite.com/posts
https://mysite.com/v1/
http://www.cheatography.com/desertgarnet/
https://readable.com

C# API Tech Interview Cheat Sheet
by DesertGarnet via cheatography.com/130725/cs/30936/

Design Patterns - Structural (cont)Design Patterns - Structural (cont)

Decorator Attach additional respon​sib​‐
ilities to an object dynami​cally.
Decorators provide a flexible
altern​ative to subcla​ssing for
extending functi​ona​lity.

Facade Provide a unified interface to a
set of interfaces in a system.
Façade defines a higher​-level
interface that makes the
subsystem easier to use.

Flyweight Use sharing to support large
numbers of fine-g​rained
objects effici​ently. A flyweight
is a shared object that can be
used in multiple contexts
simult​ane​ously. The flyweight
acts as an indepe​ndent object
in each context; it’s indist​ing​‐
uis​hable from an instance of
the object that’s not shared.

Proxy Provide a surrogate or placeh​‐
older for another object to
control access to it.

Design Patterns - Factory MethodDesign Patterns - Factory Method

The Factory MethodFactory Method is one of the most
known Design Patterns and often used
when creating things with same behavior,
but with different specif​ica​tions.

EX: Things with same behaviour, but
different specif​ica​tions: Animal Factory,
Logistics Factory (delivery method or
transport vehicle)

Classes to be created cannot be determined
in advance, therefore an abstract interface
is provided which can be reached via a
function

A class expects from its subclasses a
specif​ication of the products to be created

Specia​liz​ation options for subcla​sses, as
this pattern provides an extended version of
the object compared to the direct creation of
the object

Design Patterns - BehavioralDesign Patterns - Behavioral

Chain of
Resp.

Avoid coupling the sender of a
request to its receiver by
giving more then one object a
chance to handle the request.
Chain the receiving objects
and pass the request along
the chain until an object
handles it.

Command Encaps​ulate a request as an
object, thereby letting you
parame​terize clients with
different requests, queue or
log requests, and support
undoable operat​ions.

Interp​reter Given a language, define a
repres​ent​ation for its grammar
along with an interp​reter that
uses the repres​ent​ation to
interpret sentences in the
language.

Iterator Provide a way to access the
elements of an aggregate
object sequen​tially without
exposing its underlying
repres​ent​ation.

Mediator Define an object that encaps​‐
ulates how a set of objects
interact. Mediator promotes
loose coupling by keeping
objects from referring to each
other explic​itly, and lets you
vary their intera​ction indepe​‐
nde​ntly.

Memento Without violating encaps​ula​‐
tion, capture and extern​alize
an object’s internal state so
that the object can be restored
to this state later.

Design Patterns - Behavioral (cont)Design Patterns - Behavioral (cont)

Observer Define a one-to​-many
dependency between objects
so that when one object
changes state, all its
dependents are notified and
updated automa​tic​ally.

State Allow an object to alter its
behavior when its internal state
changes. The object will appear
to change its class.

Strategy Defines a family of algori​thms,
encaps​ulates each one, and
make them interc​han​geable.
Strategy lets the algorithm vary
indepe​ndently from clients who
use it.

Template
Method

Define a skeleton of an
algorithm in an operation,
deferring some steps to subcla​‐
sses. Template Method lets
subclasses redefine certain
steps of an algorithm without
changing the algorithms
structure.

Visitor Represent an operation to be
performed on the elements of
an object structure. Visitor lets
you define a new operation
without changing the classes of
the elements on which it
operates.

Dependency Injection PatternDependency Injection Pattern

Dependency Injection (DI) is a design
pattern used to implement IoCIoC. It allows the
creation of dependent objects outside of a
class and provides those objects to a class
through different ways. Using DI, we move
the creation and binding of the dependent
objects outside of the class that depends on
them.

By DesertGarnetDesertGarnet

cheatography.com/desertgarnet/

Not published yet.
Last updated 28th February, 2022.
Page 2 of 3.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/desertgarnet/
http://www.cheatography.com/desertgarnet/cheat-sheets/c-api-tech-interview
http://www.cheatography.com/desertgarnet/
https://readable.com

C# API Tech Interview Cheat Sheet
by DesertGarnet via cheatography.com/130725/cs/30936/

Dependency Injection Pattern (cont)Dependency Injection Pattern (cont)

The Dependency Injection pattern involves
3 types of classes:
Client Class:Client Class: The client class (dependent
class) is a class which depends on the
service class.
Service Class:Service Class: The service class (depen​‐
dency) is a class that provides service to the
client class.
Injector Class:Injector Class: The injector class injects the
service class object into the client class.

Repository Design PatternRepository Design Pattern

The Repository Design Pattern in C#
Mediates between the domain and the data
mapping layers using a collec​tio​n-like
interface for accessing the domain objects.
This isolates the data access code from the
rest of the applic​ation.

Advant​ages: Changes can be done in one
place. Testing the controller is easier as you
don't have to test against the database.

By DesertGarnetDesertGarnet

cheatography.com/desertgarnet/

Not published yet.
Last updated 28th February, 2022.
Page 3 of 3.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/desertgarnet/
http://www.cheatography.com/desertgarnet/cheat-sheets/c-api-tech-interview
http://www.cheatography.com/desertgarnet/
https://readable.com

	C# API Tech Interview Cheat Sheet - Page 1
	API Best Practices
	Design Patterns - Basics
	Design Patterns - Creational
	HTTP Headers
	Design Patterns - Structural
	Design Patterns - Singleton

	C# API Tech Interview Cheat Sheet - Page 2
	Design Patterns - Behavioral
	Design Patterns - Factory Method
	Dependency Injection Pattern

	C# API Tech Interview Cheat Sheet - Page 3
	Repository Design Pattern

