Cheatography

BI	OL 101	: Exam 1	Chea	at Sheet	
by	[deleted]	via cheato	graphy	y.com/34644/	/cs/10847/

Properties of Life
order
reproduction
growth and development
energy processing
regulation
response to the environment

evolutionary adaptation

Prokaryotic	vs. Eukar	yotic Cell
DNA	~	✓
nucleus		✓
cell	~	✓
membrane		
cell wall	~	
cytoplasm	~	~
ribosomes	~	✓
mitoch-		✓
ondria		
organisms	bacteria	plants, animals, fungi, protists

Formation of Macromolecules			
monomer	beads		
polymers	necklace		
dehydr- ation	create necklace, water produced		
hydrolysis	take necklace apart, water consumed		

Carbohydrates	
monomer	monosaccharide
polymer	polysaccharide
bonded by	covalent bonds
purpose	energy and storage
ETC	hydrophilic

By [deleted] cheatography.com/deleted-34644/

Carbohydrate (-saccharides)

mono	di	poly
glucose	lactose	starch
fructose	sucrose	glycogen
galactose	maltose	cellulose
		chitin

Storage and Energy			
	plants	animals	
energy storage	starch	glycogen	
structure	cellulose	chitin	

Polysaccharides		
maltose	glucose + glucose	
sucrose	glucose + fructose	
lactose	glucose + galactose	
cellulose	glucose	
starch	glucose	

Starch is a chain of glucose. Cellulose is made of multiple chains of glucose with hydrogen bonding to connect the chains.

The G Things	
glycerol (lipids)	ALL fatty acids
glycogen (polys-	Jenna needs energy,
accharide)	made of glucose
glucagon	sugar in the blood is
(protein)	GONE

Endosymbiont theory

Mitochondria and chloroplasts were formerly small prokaryotes that began living within larger cells, may have gained entry as undigested prey or parasites. In a world that was increasingly aerobic, host benefited from endosymbiont that could use oxygen to create energy. This led to the formation of a eukaryotic cell with a mitochondria. Plant cells were developed from eukaryotic cells with photosynthetic prokaryote.

Published 14th February, 2017. Last updated 14th February, 2017. Page 1 of 3.

Structural Protein

What structural protein is secreted outside of cells making up 40% of the protein in your body? collagen

Diabetes			
Type	insulin isn't produced, beta		
1	pancreatic cells damaged		
Type	insulin/glucose receptors not		
2	working		
Hyperglycemia (high blood sugar), hypogl-			

ycemia (low blood sugar). Antagonist to insulin is glucagon.

Tonic Solutions

Convert all %s to describe solvent, think about concentration gradient of solvent.

Hypertonic - full of things Hypotonic - empty of things

Membrane Transport

What kind of materials can travel through membrane passively?

Non-polar molecules and water.

Steroid Hormones

Why can steroid hormones pass through membranes?

non-polar

Phosphorylation

Phosphorylation is the transfer of a phosphate from ATP to another molecule.

Hierarchy of Organization		
atom	organ system	
molecule	organism	
organelle	population	
cell	community	
tissue	ecosystem	

Sponsored by **Readable.com** Measure your website readability! https://readable.com

Cheatography

BIOL 101: Exam 1 Cheat Sheet by [deleted] via cheatography.com/34644/cs/10847/

Hierarchy of Organization (cont)		
organ	biosphere	
organ	biospirere	

Community is a bunch of populations, ecosystem is those populations and abiotic factors.

Lipids	
monomer	fatty acids, glycerol
polymer	none
purpose	long-term energy storage
ETC	hydrophobic

Saturated fats are found in animals, unsaturated found in plants and is healthier. Trans fat is structured like a unsaturated fat, but straightened like a saturated fat.

Head of phospholipid is hydrophilic, tail hydrophilic. Fats are more concentrated amounts of energy than carbohydrates.

Proteins	
monomer	amino acids (different R groups)
polymer	polypeptide, enzyme
bonded by	peptide bonds
ETC	shape determines function
Destroyed via denaturation. Must be in specific temp and pH.	

Protein Structure	
primary	chain (covalent bonds)
secondary	alpha helix, beta sheet (hydrogen bonds)
tertiary	3D shape
quarte- rnary	multiple chains

Lysosomes

Digestion, disposal and recycling of material. Malfunction can result in Tay-Sachs disease.

Chloroplasts	
stroma	thick fluid
thylakoid	chips
granum	stack

Cytoskeleton			
	microt- ubules	microfila- ments	interm- ediate filaments
structure	straight, hollow tubes	solid rods	superc- oiled cables
protein subunit	tubulin	actin	fibrous proteins
	thickest	thinnest	
function	shape and support cell tracks along which organelles with motor proteins move, flagella and cilia	form 3D network inside plasma membrane, supporting cell shape	reinforce cell shape, anchor organelles

Cytoskeleton (cont)

rapidly disassemble permanent
Stages of Hormone Signaling
1. Reception
2. Signal transduction

3. Response

Water/Lipid-Soluble Hormone Signaling

Enzyme

Enzymes are selective in the reaction it catalyzes. It can be a protein or RNA. The specific reactant it acts on is the substrate, which fits into the active site on the enzyme. Cofactors are helps that bind to the active site and function in catalysis. Coenzymes are organic cofactors. This speeds up reactions.

Competitive inhibitors block the active site whereas noncompetitive inhibitors reshape the enzyme.

Cellular Respi	ration
glycolysis	cytoplasm, 2 net ATP
pyruvate oxidation	0 ATP
citric acid cycle	matrix, 2 ATP
oxidative phosphory- lation	inner mitochondrial membrane, ~28 ATP

C By che 346

By [deleted] cheatography.com/deleted-34644/ Published 14th February, 2017. Last updated 14th February, 2017. Page 2 of 3.

Sponsored by **Readable.com** Measure your website readability! https://readable.com

Cheatography

BIOL 101: Exam 1 Cheat Sheet by [deleted] via cheatography.com/34644/cs/10847/

Major Themes of Biology
emergent properties of life's hierarchy & systems that arise
structure and function
exchange of matter and energy
evolution

Theory, Hypothesis, Law

Theory - widely accepted explanatory idea that is supported by a body of evidence

Hypothesis - testable explanation for a set of observations based on the available data

Law - statement based on repeated experimental observations that describes some aspect of the universe

Law describes, theory and hypothesis explain.

Reasoning

Deductive: general --> specific

Inductive: specific --> general

Sherlock utilizes inductive reasoning. He's in the "in" and knows the details.

Nucleic Acids

monomer	nucleotides
polymer	nucleic acids, DNA, RNA
bonded by	hydrogen bonds (form helix), covalent bonds (form backbone)
purpose	genetic info

Nucleus

contains genetic information, DNA

direct protein synthesis, controlling cell's acticities

chromatin - complex of proteins and DNA

nuclear envelope - double membrane enclosing nucleus

nucleolus - where rRNA is synthesized

BI	0101-10101	
		ł

free	proteins that function w/in
nbosome	Cylosol
bound	proteins that are inserted into
ribosome	membranes, packaged in
	certain organelles, exported
	from cell

Mitochondria Diagram

Endomembrane System

nuclear envelope endoplasmic reticulum Golgi apparatus lysosome vacuole plasma membrane

Smooth & Rough ER

smooth ER	variety of metabolic processes, synthesis of lipids, process harmful substances, storage of calcium ions
rough	secrete proteins, makes
ER	membranes

Functions of Cell Structures

genetic

manufacture, distribution

energy

structural support, movement, communication

Published 14th February, 2017. Last updated 14th February, 2017. Page 3 of 3.

Sponsored by **Readable.com** Measure your website readability! https://readable.com

Aquaporins

- What if a cell has too many aquaporins?
- Too much water will be absorbed, body
- tissues will swell.

Exocytosis & Endocytosis

Types of Endocytosis

Phagocytosis takes in large molecules, taking them to lysosome via vacuole. Receptor-mediated endocytosis takes in specific solutes, forming a vacuole and then releasing the solute into cytoplasm.