Differentation	
$\sin x$	
$\cos x$	$\cos x$
tan x	$-\sin x$
$\operatorname{cosec} x$	$-\sec ^{2} x$
$\sec x$	$-\operatorname{cosec} x \cot x$
$\cot x$	$-\operatorname{cosec} x \tan x$
In x	$1 / x$

Trig Identitys	
$\operatorname{cosec} x$	$1 / \sin x$
$\sec x$	$1 / \cos x$
$\cot x$	$1 / \tan x$
$\cos ^{2} x+\sin ^{2} x$	1
$\sec ^{2} x$	$1+\tan ^{2} x$
$\operatorname{cosec}^{2} x$	$1+\cot ^{2} x$

Inverse a function

1. Replace $f(x)$ with y
2. Rearrange for x
3. Replace x with $f^{-1}(x)$ and y with x
4. Swap the domain and range of the function

Differentitation rules
If $y=f(u)$ and $u=$ $d y / d x=d y / d u x d u / d x$ $g(x)$
If $y=u(x) v(x)$ $d y / d x=u(d v / d x)+$ $v(d u / d x)$
If $y=u(x) / v(x)$

By [deleted]

cheatography.com/deleted-
29733/

Not published yet.
Last updated 4th August, 2016.
Page 1 of 1 .

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

