
random tasks Cheat Sheet
by [deleted] via cheatography.com/29211/cs/8583/

Node Package Manager (NPM)Node Package Manager (NPM)

NPM is used to install javascript tools for server side, or dev tool usage. NPM hosts packages for client and server (typically called browserify
compatible) but they must be installed via JSPM commands. The contents and commands related to a node package are all stored within the
package.json file in its root.

NPM CommandsNPM Commands

help npm --help

install package from https://www.npmjs.com/ npm install packagename --save

install internal package (windows cli) npm install friendlyName=%wgit%repository.git

update installed version npm update [friendlyname e.g. packagename]

run a command from package.config under the scripts section npm run [commandname]

NPM TasksNPM Tasks

Delete a
package

delete the package entry from package.config, and run "npm prune" to remove stale libraries

Install global
package

tools to be used standalone from the command-line can be installed with -g or --global, which installs them next to your npm
executable instead of in the current project

Javascript Package Manager (JSPM)Javascript Package Manager (JSPM)

JSPM is a package manager that installs packages in a format understood by SystemJs. It was designed to allow packages to be pulled from
any configurable endpoint (github/npm/private repositories), in a way that allows for versioning and dependencies across systems.

JSPM CommandsJSPM Commands

help jspm --help

install package from http://kasperlewau.github.io/registry/#/ jspm install packagename

install package from windsor jspm install friendlyName=windsor:repo-name.git

install package from npm https://www.npmjs.com/ jspm install npm:packageName

install package from github jspm install github:user/reponame

update installed version jspm update [friendlyname e.g. packagename]

remove package jspm uninstall packageName

JSPM TasksJSPM Tasks

install
file
loader

For loading non-js files using custom loaders, set install with friendlyname as the file extension ex: jspm install html=text (to load html
as a string using the text loader). Used in code by placing a trailing ! after the extension ex: import 'test.html!';

By [deleted][deleted]
cheatography.com/deleted-
29211/

 

Not published yet.
Last updated 11th July, 2016.
Page 1 of 4.

 

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/deleted-29211/
http://www.cheatography.com/deleted-29211/cheat-sheets/random-tasks
https://www.npmjs.com/
http://kasperlewau.github.io/registry/#/
https://www.npmjs.com/
http://www.cheatography.com/deleted-29211/
https://readable.com


random tasks Cheat Sheet
by [deleted] via cheatography.com/29211/cs/8583/

SystemJsSystemJs

SystemJs is a runtime package loader. Its configuration is found in config.js (by default), or the file specified as the jspm config file in package.j‐
son.It loads javascript packages via javascript commands to make their services available. It is comparable to existing loaders such as
commonjs, requirejs, and webpack.
Features of SystemJS include:Features of SystemJS include:
optional transpilation of es6 syntax via plugins
package version management
non-js content loaders
production build capability into standalone js file, or multiple module formats

SystemJs ConfigSystemJs Config

defaultJSExt‐
ensions

adds js after files in import statements. This is deprecated, it must be true currently, but will be false in the future, so always
explicitly specify file extensions.

transpiler plugin used to convert es6 into javascript

paths created by jspm to lookup packages in file structure, do not modify

meta overrides for working with incompatible packages (ex: allows making JQuery a global for plugins that don't know how to load
it as a module)

map maps package names to files/folders generally managed by JSPM and should not be modified

Bullet to Demystify the Package Tree Mental ModelBullet to Demystify the Package Tree Mental Model

Ideally everything is a package, including your SPA (its entry point is the act of loading index.html)

Packages always have a single entry point, and optionally, children/descendants.

The topmost package will not support es6 until browsers do, because of this, the topmost package must use the SystemJs global to load its
children

Packages only need references to children that they work with directly, all other descendants are taken care of automatically.

A production package (SPA) is just the entry point to the top level package (all descendant code is present, but technically obscured/private).

Using Javascript PackagesUsing Javascript Packages

For thinking about javascipt packages in .Net terms:
Library:
package.json defines a main file which is the entry point to the package. This file (generally index.js) should contain exports for all public classes
within the package. This makes a package equivalent to a .Net dll, where all of the public classes are listed in index.js.
Class / Service:
Export from a single js file.
Sharing code:
Import statements are like "using" statements but they aren't optional because javascript has no concept of automatic sharing within namesp‐
aces.
index.js example:

By [deleted][deleted]
cheatography.com/deleted-
29211/

 

Not published yet.
Last updated 11th July, 2016.
Page 2 of 4.

 

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/deleted-29211/
http://www.cheatography.com/deleted-29211/cheat-sheets/random-tasks
http://www.cheatography.com/deleted-29211/
https://readable.com


random tasks Cheat Sheet
by [deleted] via cheatography.com/29211/cs/8583/

Using Javascript Packages (cont)Using Javascript Packages (cont)

import Class1 from './lib/class1.js';
import Service1 from './lib/service1.js';
export {Class1, Service1};
class1.js example:
import Service2 from './service2.js';
export default function thething{ Service2.log('oh yeah');}
Top Level Package:Top Level Package:
When loading a package into a browser, because ES6 syntax is not yet supported, systemjs has a global with an import method which returns a
promise with the resulting module. In production this is not required because Systemjs will compile the package into a single js file which can beIn production this is not required because Systemjs will compile the package into a single js file which can be
loaded using a script tag.loaded using a script tag.
Example:
var lodash = null;
System.import('lodash').then(
function(result){ lodash = result;}
);

More complex info on modules and syntax here: http://www.2ality.com/2014/09/es6-modules-final.html

PromisesPromises

Promises are a simple way of performing async code in javascript. They are included natively in most browsers, and easily polyfilled in non-co‐
mpliant browsers. Complex promise libraries should not be used as polyfills for the same reason it is dangerous to extend other native JS
browser objects.

Promises (Extremely Basic) UsagePromises (Extremely Basic) Usage

Create a promise from a value var promise = Promise.resolve(value)

Do something when a promise resolves
or rejects

promise.then(function fulfilled(value){}, function rejected(err)
{})

Do something when a promise rejects promise.catch(function rejected(err){})

Resolve an array of promises (can also
contain raw values)

Promise.all([value1,promise1]).then(function fulfilled(arg)
{/*arg[0]=value1 arg[1]=result of promise1*/})

Basic Rules inside a "then":
1. If a promise is returned, the returned promise will be resolved and used for the next "then".
2. If a value is returned, it will be passed to the next then.
3. If an error is thrown, or promise rejected, the chain will skip to the next "then" or "catch" that handles the error.
4. Promise.all rejects if any promises reject.

Better documentation here: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

SemverSemver

Semver is a versioning scheme used across most package management systems. It is used within a package to specify when patches, minor
features, and breaking changes occur. It is used by package managers to specify which versions of a package are considered compatible, and
what the allowed automatic-upgrade path should be.

By [deleted][deleted]
cheatography.com/deleted-
29211/

 

Not published yet.
Last updated 11th July, 2016.
Page 3 of 4.

 

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/deleted-29211/
http://www.cheatography.com/deleted-29211/cheat-sheets/random-tasks
http://www.2ality.com/2014/09/es6-modules-final.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
http://www.cheatography.com/deleted-29211/
https://readable.com


random tasks Cheat Sheet
by [deleted] via cheatography.com/29211/cs/8583/

Package managers and semverPackage managers and semver

Package managers install the latest version of a dependency, that meets all of the requirements of other dependencies.
Example:
Package relies on lodash@1 (any release of lodash major version 1)
The latest release of lodash is 1.6.8.
Package contains 1.6.8 as installed dependency.
Package adds a dependency "foo" that requires lodash@1.5.2 (this is hypothetical, 3rd party sources generally lock on major version only)
Package now contains lodash@1.5.2 which meets requirements of both.
There are also generally devices for locking versions and solving conflicts built into every package manager, but use cases are for extreme
legacy support and generally semver results in smooth upgrade paths making them unnecessary.

Semver (2.0) Syntax Inside A PackageSemver (2.0) Syntax Inside A Package

Version format *1 [v][Major].[Minor].[Patch]

When you change something and tests break or you don't believe in testing but you still pretend to be collaborative npm version major

When you add something and no tests break npm version minor

When you fix a bug npm version patch

*1 The leading v on versions is ignored, but some providers aren't smart about how that gets handled so it should always be included on git tags
to remain standard in our code.

Semver has many more features/options for complex flows that we probably shouldn't waste our time on.

Semver (2.0) Syntax Consuming A PackageSemver (2.0) Syntax Consuming A Package

npm package format "dependencies": { "packageName": "version" }

jspm package format "dependencies": { "packageName": "wheretofindpackage@version" }

npm installed from git
format *1

"dependencies": { "packageName": "git+repourlwithreadonlycredent‐
ials#version(with leading v)" }

~ prefix Allows patch-level changes if a minor version is specified on the comparator. Allows minor-level changes if not.

^ prefix Allows changes that do not modify the left-most non-zero digit

Partial Version Includes all versions that match the present parts. ex: 1 = 1.1.0 or 1.5.4 but not 2.anything.anything

*1 npm packages installed directly from git use git tags directly and don't pay attention to semver, so it is best to just force move a major version
tag until switching to the next major version. Npm git provider should only be used for internal dev tools so versioning is not overly important.

By [deleted][deleted]
cheatography.com/deleted-
29211/

 

Not published yet.
Last updated 11th July, 2016.
Page 4 of 4.

 

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/deleted-29211/
http://www.cheatography.com/deleted-29211/cheat-sheets/random-tasks
mailto:lodash@1.5.2
mailto:lodash@1.5.2
http://www.cheatography.com/deleted-29211/
https://readable.com

	random tasks Cheat Sheet - Page 1
	Node Package Manager (NPM)
	NPM Commands
	NPM Tasks
	Javascript Package Manager (JSPM)
	JSPM Commands
	JSPM Tasks

	random tasks Cheat Sheet - Page 2
	SystemJs
	SystemJs Config
	Bullet to Demystify the Package Tree Mental Model
	Using Javascript Packages

	random tasks Cheat Sheet - Page 3
	Promises
	Promises (Extremely Basic) Usage
	Semver

	random tasks Cheat Sheet - Page 4
	Package managers and semver
	Semver (2.0) Syntax Inside A Package
	Semver (2.0) Syntax Consuming A Package


