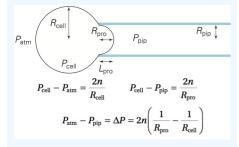


# **BME Cheat Sheet Cheat Sheet**

by [deleted] via cheatography.com/27799/cs/8137/

## **Assumptions**


- 1. The fluid is Newtonian
- 2. Fluid is isotropic
- 3. Fluid is incompressible
- 4. Fluid flow is steady state
- 5. Fluid flow is laminar
- 6. Fluid flow is fully developed
- 7. No slip condition

#### **Units and Conversions**

Pressure 1 Pa = 1 N/m<sup>2</sup> = 1  $\frac{kg}{(m \cdot s^2)}$ 

1 atm = 101325 Pa = 2116.22  $lbf/ft^2$ 

## **Micropipette Aspiration**



where n is the surface tension of the cell [N/m]

if given thickness then  $n = \sigma t$ 

#### **Buoyancy**

Equal volumes feel equal buoyant forces. Why? Identical pressure environments and equal water displacement.

Submerged Object: Archimedes' Principle

Mass of Object - Submerged Mass =

Density of Fluid x Volume of Object

Submerge object → water level increases

Remove object from boat → water level

decreases

# **Terms and Facts**

Viscosity

A material property, gives proportionality of shear stress and shear rate [g/cm·s]

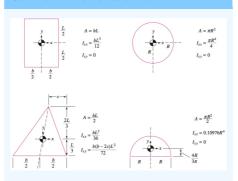
# **Terms and Facts (cont)**

Absolute/Dynamic
Viscosity

Kinematic  $v=\mu/\rho$ 

Viscosity

Non-Newtown Fluids:  $\tau = \mu \gamma^{\eta}$ 


Shear Faster you shear it, thinner it
Thinning ( $\eta$  becomes; resistance
< 1) decreases, becomes more
uniform.

Shear Faster you shear it, thicker it Thickening becomes; resistance

 $(\eta > 1)$  increases.

Bingham Acts like a solid until the Plastic sheet stress reaches a  $(\tau=\mu\gamma+\tau_y)$  critical value

#### **Centrioidal Moments of Inertia**



$$xcp = -Y \cdot |xy \cdot sin\theta \cdot |xy| / Pcg \cdot A = -|xy \cdot sin\theta| / hcg \cdot A$$

$$ycp = -\frac{y \cdot lxx \cdot sin\theta \cdot lxy}{Pcg \cdot A} = -\frac{lxx \cdot sin\theta}{hcg \cdot A}$$

$$F = y \cdot hcg \cdot A = P \cdot A$$

The center of gravity and center of pressure are different locations.

The force on the object occurs at the center of gravity.

The pressure on the object occurs at the center of pressure (use lxx, and lxy)

When calculating the moment: remember the reaction forces

# Manometer

Pressure = density  $\mathbf{x}$  gravity  $\mathbf{x}$  height =  $\rho$ gh If given N/m<sup>3</sup> or lbf/ft<sup>3</sup> then do **not** add gravity

Change in elevation → change in pressure
Within a single fluid, pressure is constant

along a height

Specific Gravy = [density of X] / [density of water]

move down  $\rightarrow$  (+), move up  $\rightarrow$  (-)



By [deleted]

cheatography.com/deleted-

Not published yet.
Last updated 9th May, 2016.
Page 1 of 1.

Sponsored by **Readable.com**Measure your website readability!
https://readable.com