
SQL Query Performance Improvement Cheat Sheet
by [deleted] via cheatography.com/2754/cs/10598/

Introd ​uction

SQL query perfor ​mance improv ​ement is a very though ​t-p ​rov ​oking
topic between developers and the user community. Users always
wants a fast response on their data retrieval action and developers
put forth their best efforts to provide the data in the shortest time,
however, there is no straig ​htf ​orward way to define what is the best
perfor ​mance. Sometime it’s debatable what is good and what is bad
perfor ​mance of a query but overall if you follow best practices during
develo ​pment, you can provide the best query response to users and
avoid such discus ​sions.. You can choose multiple ways to improve
SQL query perfor ​mance, which falls under various categories like re-
writing the SQL query, creation and use of Indexes, proper
management of statis ​tics, etc.

http:/ ​/ww ​w.d ​eve ​lop ​er.c ​om ​/db ​/sl ​ide ​sho ​ws/ ​10- ​way ​s-t ​o-i ​mpr ​ove ​-sq ​l-q ​‐
uer ​y-p ​erf ​orm ​anc ​e.html

Avoid Multiple Joins in a Single Query

Try to avoid writing a SQL query using multiple joins that includes
outer joins, cross apply, outer apply and other complex sub queries.
It reduces the choices for Optimizer to decide the join order and join
type. Sometime, Optimizer is forced to use nested loop joins, irresp ​‐
ective of the perfor ​mance conseq ​uences for queries with excess ​ively
complex cross apply or sub queries.

Eliminate Cursors from the Query

Try to remove cursors from the query and use set-based query; set-
based query is more efficient than cursor ​-based. If there is a need to
use cursor than avoid dynamic cursors as it tends to limit the choice
of plans available to the query optimizer. For example, dynamic
cursor limits the optimizer to using nested loop joins.

Avoid Use of Non-co ​rre ​lated Scalar Sub Query

You can re-write your query to remove non-co ​rre ​lated scalar sub
query as a separate query instead of part of the main query and store
the output in a variable, which can be referred to in the main query
or later part of the batch. This will give better options to Optimizer,
which may help to return accurate cardin ​ality estimates along with a
better plan.

 

Avoid Multi- ​sta ​tement Table Valued Functions

Multi- ​sta ​tement TVFs are more costly than inline TFVs. SQL Server
expands inline TFVs into the main query like it expands views but
evaluates multi- ​sta ​tement TVFs in a separate context from the main
query and materi ​alizes the results of multi- ​sta ​tement into temporary
work tables. The separate context and work table make multi- ​sta ​‐
tement TVFs costly.

Creation and Use of Indexes

We are aware of the fact that Index can magically reduce the data
retrieval time but have a reverse effect on DML operat ​ions, which
may degrade query perfor ​mance. With this fact, Indexing is a challe ​‐
nging task, but could help to improve SQL query perfor ​mance and
give you best query response time.

Understand the Data

Understand the data, its type and how queries are being performed
to retrieve the data before making any decision to create an index. If
you understand the behavior of data thorou ​ghly, it will help you to
decide which column should have either a clustered index or non-cl ​‐
ustered index. If a clustered index is not on a unique column then
SQL Server will maintain uniqueness by adding a unique identifier to
every duplicate key, which leads to overhead. To avoid this type of
overhead choose the column correctly or make the approp ​riate
changes..

Create a Highly Selective Index

Select ​ivity define the percentage of qualifying rows in the table
(quali ​fying number of rows/total number of rows). If the ratio of the
qualifying number of rows to the total number of rows is low, the
index is highly selective and is most useful. A non-cl ​ustered index is
most useful if the ratio is around 5% or less, which means if the
index can eliminate 95% of the rows from consid ​eration. If index is
returning more than 5% of the rows in a table, it probably will not be
used; either a different index will be chosen or created or the table
will be scanned..

Position a Column in an Index

Order or position of a column in an index also plays a vital role to
improve SQL query perfor ​mance. An index can help to improve the
SQL query perfor ​mance if the criteria of the query matches the
columns that are left most in the index key. As a best practice, most
selective columns should be placed leftmost in the key of a non-cl ​‐
ustered index.

By [deleted]
cheatography.com/deleted-
2754/

 

Not published yet.
Last updated 20th January, 2017.
Page 1 of 2.

 

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/deleted-2754/
http://www.cheatography.com/deleted-2754/cheat-sheets/sql-query-performance-improvement
http://www.developer.com/db/slideshows/10-ways-to-improve-sql-query-performance.html
http://www.cheatography.com/deleted-2754/
https://apollopad.com


SQL Query Performance Improvement Cheat Sheet
by [deleted] via cheatography.com/2754/cs/10598/

Drop Unused Indexes

Dropping unused indexes can help to speed up data modifi ​cations
without affecting data retrieval. Also, you need to define a strategy for
batch processes that run infreq ​uently and use certain indexes. In
such cases, creating indexes in advance of batch processes and
then dropping them when the batch processes are done helps to
reduce the overhead on the database.

Statistic Creation and Updates

You need to take care of statistic creation and regular updates for
computed columns and multi- ​columns referred in the query; the
query optimizer uses inform ​ation about the distri ​bution of values in
one or more columns of a table statistics to estimate the cardin ​ality,
or number of rows, in the query result. These cardin ​ality estimates
enable the query optimizer to create a high-q ​uality query plan.

Revisit Your Schema Defini ​tions

Last but not least, revisit your schema defini ​tions; keep on eye out
that approp ​riate FORIGEN KEY, NOT NULL and CEHCK constr ​aints
are in place or not. Availa ​bility of the right constraint on the right
place always helps to improve the query perfor ​mance, like FORIGEN
KEY constraint helps to simplify joins by converting some outer or
semi-joins to inner joins and CHECK constraint also helps a bit by
removing unnece ​ssary or redundant predic ​ates.

Conclusion

We discussed how SQL query perfor ​mance can be improved by re-
writing a SQL query, creation and use of Indexes, proper
management of statistics and we revisited schema defini ​tions. There
are many more areas that can be looked at to improve the SQL
query perfor ​mance like using query hints, table hints and plan hints,
etc.

http:/ ​/ms ​dn.m ​ic ​ros ​oft.co ​m/e ​n-u ​s/l ​ibr ​ary ​/ff ​647 ​793.aspx
http:/ ​/ms ​dn.m ​ic ​ros ​oft.co ​m/e ​n-u ​s/l ​ibr ​ary ​/ff ​650 ​689.aspx
http:/ ​/te ​chn ​et.m ​ic ​ros ​oft.co ​m/e ​n-u ​s/l ​ibr ​ary ​/ms ​172 ​984.aspx

 

By [deleted]
cheatography.com/deleted-
2754/

 

Not published yet.
Last updated 20th January, 2017.
Page 2 of 2.

 

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/deleted-2754/
http://www.cheatography.com/deleted-2754/cheat-sheets/sql-query-performance-improvement
http://msdn.microsoft.com/en-us/library/ff647793.aspx
http://msdn.microsoft.com/en-us/library/ff650689.aspx
http://technet.microsoft.com/en-us/library/ms172984.aspx
http://www.cheatography.com/deleted-2754/
https://apollopad.com

	SQL Query Performance Improvement Cheat Sheet - Page 1
	Introd­uction
	Avoid Multi-­sta­tement Table Valued Functions
	Creation and Use of Indexes
	Understand the Data
	Avoid Multiple Joins in a Single Query
	Eliminate Cursors from the Query
	Create a Highly Selective Index
	Avoid Use of Non-co­rre­lated Scalar Sub Query
	Position a Column in an Index

	SQL Query Performance Improvement Cheat Sheet - Page 2
	Drop Unused Indexes
	Statistic Creation and Updates
	Revisit Your Schema Defini­tions
	Conclusion


