Cheatography

Introduction

NASA Coding Standards for Javascript Cheat Sheet
by [deleted] via cheatography.com/2754/cs/9386/

3. Do not use dynamic memory allocation after ... (cont)

JPL have been developing software for most of unmanned missions
in the field of deep space and other planets exploaration. High level
of autmatization and long duration of missions led to superior
demands to software quality. As a result of JPL amazing experience
a set of code guidelines was developed and published recently.
Since demands to web-driven software constantly increase and more
critical tasks are entrusted to JavaScript, lets apply NASA coding
guidelines to JavaScript / HTML applications for higher performance,
reliability and the better world..

Credit: http://pixelscommander.com/en/javascript/nasa-coding-stan-
darts-for-javascript-performance/

1, Function Length

No function should be longer than what can be printed on a
single sheet of paper in a standard reference format with one
line per statement and one line per declaration. Typically, this
means no more than about 60 lines of code per function.

This fits perfectly for JavaScript. Decomposed code is better to
understand, verify and maintain.

2. Restricting All Code

Restrict all code to very simple control flow constructs — do not
use goto statements, setjmp or longjmp constructs, and direct
or indirect recursion.

Rule from the C world makes wonder. We definitely will not use goto
or setjmp in JS, but what is wrong with recursion? Why NASA
guidelines prescribe to avoid simple technique we were studying as
early as in school? The reason for that is static code analyzers
NASA use to reduce the chance for error. Recursions make code
less predictable for them. JavaScript tools do not have such a
precept so what we can take out of this rule?

@ Use constructs which are justified by complexity. If you want to
write reliable code — drop to write tricky code and write predictable.
Define coding standard and follow it;

@ Use code analyzers to reduce chance for defect: JSHint/JSLint/G-
oogle Closure Tools;

@ Keep codebase by monitoring metrics: Plato;

@ Analyze types with Flow/Google Closure Tools.

3. Do not use dynamic memory allocation after ...

Do not use dynamic memory allocation after initialization.
At first glance JavaScript manage memory itself and garbage
collection cleaning memory from time to time solving the rest of
problems for us. But it is not absolutely correct.

By [deleted]
cheatography.com/deleted-

2754/ Page 1 of 2.

Published 25th January, 2017.
Last updated 28th February, 2020.

Memory leaks often, spoiled JavaScript developers do not have a
culture of managing memory, garbage collector decrease perfor-
mance when run and it is hard to tame. Actually we can get three
recommendations from this rule. Two of them are nice to follow in
any project and last one fits for performance and reliability critical
software.. @Manage your variables with respect. Regularize
variables declaration by putting them in the top of scope in order to
increase visibility of their usage;

@ Watch for memory leaks, clean listeners and variables when not
needed anymore. Classic article;

@ Switch JavaScript to static memory mode and have predictable
garbage collection behaviour (means no accident performance
regression and no sawtooth pattern) by using objects pool.

4. All loops must have a fixed upper-bound.

As JPL explains this makes static analysis more effective and
helps to avoid infinite loops. If limit is exceeded function returns
error and this takes system out of failure state. For sure, this is quite
valuable for software with 20 years uptime! Checks for limit exceeds
are curried out by assertions. You may find more details on
assertions in fifth rule. If you accept assertions practice use limits for
loops as well, you will like it.

5.The assertion density

The assertion density of the code should average to a minimum
of two assertions per function.

It is good to put few words here on what assertion is. The simplest
parallel for them are unit tests which executes in run time.

1 if (Ic_assert(altitude > MAX_POSSIBLE_ALTITUDE) == true) {

2 return ERROR;

3The rule literally says:

}

“Statistics for industrial coding efforts indicate that unit tests often
find at least one defect per 10 to 100 lines of code written. The odds
of intercepting defects increase with assertion density.”

Great, does this mean that we can treat rule as: “Write unit tests!“?
Not exactly. Speciality of assertions is that they execute in run time
and closest practice for JavaScript land is a combination of unit tests
and run time checks for program state conformity with generating
errors and errors handling.

@ Than higher is tests density than less defects you get. Minimal
amount of tests is 2 per function;

@ Watch for anomalies in system state in run time. Generate and
handle errors in case of failures.

Sponsored by Readable.com
Measure your website readability!
https://readable.com


http://www.cheatography.com/
http://www.cheatography.com/deleted-2754/
http://www.cheatography.com/deleted-2754/cheat-sheets/nasa-coding-standards-for-javascript
http://pixelscommander.com/en/javascript/nasa-coding-standarts-for-javascript-performance/
http://www.cheatography.com/deleted-2754/
https://readable.com

NASA Coding Standards for Javascript Cheat Sheet

C-l'leatography by [deleted] via cheatography.com/2754/cs/9386/

6. Data objects must be declared ...

Data objects must be declared at the smallest possible level of
scope.

This rule have simple intention behind — to keep data in private
scope and avoid unauthorized access. Sounds generic, smart and
easy to follow.

7. The return value of non-void functions

The return value of non-void functions must be checked by
each calling function, and the validity of parameters must be
checked inside each function.

Authors of guideline assure that this one is the most violated. And
this is easy to believe because in it's strictest form it means that
even built-in functions should be verified. On my opinion it makes
sense to verify results of third party libraries being returned to app
code and function incoming parameters should be verified for
existence and type accordance.

8. The use of the preprocessor

The use of the pre-processor must be limited to the inclusion of
header files and simple macro definitions. The C pre-processor is
a powerful obfuscation tool that can destroy code clarity and
befuddle many text based checkers.

Using pre-processors should be limited in any language. They are
not needed since we have standardized, clean and reliable syntax for
putting commands into engine, it makes even less sense taking into
account that JavaScript is constantly evolving. Reliable and fast
JavaScript should be written in JavaScript. Nice research on determ-
ining the cost of JS transpilation

9.The use of pointers

The use of pointers should be restricted. Specifically, no more
than one level of dereferencing is allowed. Function pointers are
not permitted.

This is the rule JavaScript developer can not get anything from.

10. All code must be compiled

All code must be compiled, from the first day of development,
with all compiler warnings enabled at the compiler’s most
pedantic setting. All code must compile with these setting without
any warnings.

We all know it... Do not hoard warnings, do not postpone fixes, keep
code clean and perfectionist inside you alive.

By [deleted] Published 25th January, 2017. Sponsored by Readable.com
cheatography.com/deleted- Last updated 28th February, 2020. Measure your website readability!
2754/ Page 2 of 2. https://readable.com


http://www.cheatography.com/
http://www.cheatography.com/deleted-2754/
http://www.cheatography.com/deleted-2754/cheat-sheets/nasa-coding-standards-for-javascript
http://www.cheatography.com/deleted-2754/
https://readable.com

	NASA Coding Standards for Javascript Cheat Sheet - Page 1
	Introd­uction
	1, Function Length
	4. All loops must have a fixed upper-­bound.
	2. Restri­cting All Code
	5.The assertion density
	3. Do not use dynamic memory allocation after ...

	NASA Coding Standards for Javascript Cheat Sheet - Page 2
	6. Data objects must be declared ...
	7. The return value of non-void functions
	8. The use of the prepro­cessor
	9.The use of pointers
	10. All code must be compiled


